IXYS

DSA 2 | 100 SB

100 V

0.65 V

2 A

advanced

Schottky	/
----------	---

High Performance Schottky Diode Low Loss and Soft Recovery Single Diode

Part number

Very low Vf

• Low Irm-values

protection circuits · Low noise switching Low losses

(Marking on product)

DSA 2 | 100 SB

Features / Advantages:

• Extremely low switching losses

• Improved thermal behaviour

• High reliability circuit operation

· Low voltage peaks for reduced

(S2KAB)

Package:

 $V_{RRM} =$

=

=

I_{FAV}

VF

SMB (DO-214AA)

- Industry standard outline
- Epoxy meets UL 94V-0
 RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{vJ} = 25 °C			100	V
I _R	reverse current	V _R = 100 V	T _{vJ} = 25 °C			0.01	mA
		$V_{R} = 100 V$ $T_{VJ} = 125 °C$	T _{vJ} = 125 °C			5	mA
V _F	forward voltage $I_F = 2A$ $I_F = 4A$ $T_{vJ} = 25^{\circ}C$	T - 25°C			0.79	V	
		$I_{VJ} = 25 C$			0.87	V	
	$I_{\rm F} = 2A$ T (05.00	$T = 105^{\circ}$			0.65	V	
		$I_F = 4A$	$T_{vJ} = 125 \degree C$			0.75	V
I _{fav}	average forward current	rectangular, d = 0.5	T _L = 125 °C			2	А
V _{F0}	threshold voltage	calculation only	T _L = 175 °C				V
r _F	slope resistance	calculation only	L				mΩ
R _{thJL}	thermal resistance junction to lead*					25	K/W
T _{vj}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		T _L = 25 °C			6	W
IFSM	max. forward surge current	$t_{p} = 10 \text{ms} (50 \text{Hz}), \text{sine}$	T _{vJ} = 45 °C			75	А
C,	junction capacitance	$V_R = 5V; f = 1 MHz$	$T_{vJ} = 25 °C$			85	pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{vj} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz				tbd	А

Applications:

converters

supplies (SMPS)

• Decoupling diode

• Rectifiers in switch mode power

• Free wheeling diode in low voltage

* mounted on 1 inch square PCB

LIXYS

DSA 2 I 100 SB

advanced

					Ratings		
Symbol	Definition	Conditions	m	in.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*					А
R _{thJA}	thermal resistance junction	to ambient			70		K/W
M _D	mounting torque						Nm
F _c	mounting force with clip						Ν
T _{stg}	storage temperature			-55		150	°C
Weight					0.1		g

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines SMB (DO-214AA)

Dim.	Millimeters		Inches	
	min	max	min	max
А	4.06	4.57	0.160	0.180
В	3.30	3.94	0.130	0.155
С	1.95	2.20	0.077	0.087
D	2.13	2.44	0.084	0.096
Е	5.21	5.59	0.205	0.220
F	0.76	1.52	0.030	0.060
G	0.15	0.31	0.006	0.012
Н	2.00	2.20	0.079	0.087