Products > RF ICs/Discretes > RF ICs > GaAs Amplifiers, Mixers, Switches > MGA-87563

MGA-87563

3V LNA, 4.5mA Low Current, 0.5-4GHz, SOT363(SC-70)

MGA-87563 0.5–4 GHz 3 V Low Current GaAs MMIC LNA

Data Sheet

Description

Avago's MGA-87563 is an economical, easy-to-use GaAs MMIC amplifier that offers low noise and excellent gain for applications from 0.5 to 4 GHz. Packaged in an ultra-miniature SOT-363 package, it requires half the board space of a SOT-143 package.

With the addition of a simple shunt-series inductor at the input, the device is easily matched to achieve a noise of 1.6 dB at 2.4 GHz. For 2.4 GHz applications and above, the output is well matched to 50 Ohms. Below 2 GHz, gain can be increased by using conjugate matching.

The circuit uses state-of-the-art PHEMT technology with self-biasing current sources, a source-follower interstage, resistive feedback, and on-chip impedance matching networks. A patented, on-chip active bias circuit allows operation from a single +3 V or +5 V power supply. Current consumption is only 4.5 mA, making this part ideal for battery powered designs.

Surface Mount SOT-363 (SC-70) Package

Pin Connections and Package Marking

Note:

Package marking provides orientation and identification. "87" = Device Code

 $x^{"}$ = Date code character identifies month of manufacture

Features

- Lead-free Option Available
- Ultra-Miniature Package
- 1.6 dB Min. Noise Figure at 2.4 GHz
- 12.5 dB Gain at 2.4 GHz
- Single +3 V or 5 V Supply, 4.5 mA Current

Applications

• LNA or Gain Stage for PCS, ISM, Cellular, and GPS Applications

Equivalent Circuit

Attention:

Observe precautions for handling electrostatic sensitive devices.

ESD Machine Model (Class A)

ESD Human Body Model (Class 0)

Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{dd}	Device Voltage, RF Output to Ground	V	6
V _{in} V _{out}	RF input or RF Output Voltage to Ground	V	+0.5 -1.0
P _{in}	CW RF Input Power	dBm	+13
T _{ch}	Channel Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

Thermal Resistance^[2]: $\theta_{ch-c} = 160^{\circ}C/W$

Notes:

- 1. Operation of this device above any one of these limits may cause permanent damage.
- 2. $T_{\rm C} = 25^{\circ}$ C ($T_{\rm C}$ is defined to be the temperature at the package pins where contact is made to the circuit board).

MGA-87563 Electrical Specifications^{[3]}, T_{C} = 25°C, Z₀ = 50 Ω , V_{dd} = 3 V

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
G _{test} ^[3]		f = 2.0 GHz		11	14	
NF _{test} ^[3]		f = 2.0 GHz			1.8	2.3
NFo	Optimum Noise Figure	f = 0.9 GHz	dB		1.9	
	(Tuned for lowest noise figure)	f = 1.5 GHz			1.6	
		f = 2.0 GHz			1.6	
		f = 2.4 GHz			1.6	
		f = 4.0 GHz			2.0	
Ga	Associated Gain at NF ₀	f = 0.9 GHz	dB		14.6	
	(Tuned for lowest noise figure)	f = 1.5 GHz			14.5	
		f = 2.0 GHz			14.0	
		f = 2.4 GHz			12.5	
		f = 4.0 GHz			10.3	
P _{1dB}	Output Power at 1 dB Gain Compression	f = 0.9 GHz	dBm		-2.0	
		f = 1.5 GHz			-1.8	
		f = 2.0 GHz			-2.0	
		f = 2.4 GHz			-2.0	
		f = 4.0 GHz			-2.6	
IP ₃	Third Order Intercept Point	f = 2.4 GHz	dBm		+8	
VSWR	Output VSWR	f = 2.4 GHz			1.8	
l _{dd}	Device Current		mA		4.5	

Note:

3. Guaranteed specifications are 100% tested in the circuit in Figure 10 in the Applications Information section.

Package Dimensions Outline 63 (SOT-363/SC-70)

	DIMENSIONS (mm)		
SYMBOL	MIN.	MAX.	
E	1.15	1.35	
D	1.80	2.25	
HE	1.80	2.40	
Α	0.80	1.10	
A2	0.80	1.00	
A1	0.00	0.10	
Q1	0.10	0.40	
е	0.650 BCS		
b	0.15	0.30	
с	0.10	0.20	
L	0.10	0.30	

NOTES:

- 1. All dimensions are in mm.
- 2. Dimensions are inclusive of plating.
- Dimensions are inclusive of plating.
 Dimensions are exclusive of mold flash & metal burr.
 All specifications comply to EIAJ SC70.
 Die is facing up for mold and facing down for trim/form, ie: reverse trim/form.
- 6. Package surface to be mirror finish.

Part Number Ordering Information

	No. of	
Part Number	Devices	Container
MGA-87563-TR1	3000	7" Reel
MGA-87563-TR2	10000	13" Reel
MGA-87563-BLK	100	antistatic bag
MGA-87563-TR1G	3000	7" Reel
MGA-87563-TR2G	10000	13" Reel
MGA-87563-BLKG	100	antistatic bag

Note: For lead-free option, the part number will have the character "G" at the end.

8