4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output The Digital Tomodachi Series of non-isolated dc-dc converters deliver exceptional electrical and thermal performance in DOSA based footprints for Point-of-Load converters. Operating from a 4.5Vdc-14.4Vdc input, these are the converters of choice for Intermediate Bus Architecture (IBA) and Distributed Power Architecture applications that require high efficiency, tight regulation, and high reliability in elevated temperature environments with low airflow. The PMBus interface supports a range of commands to both control and monitor the module. The module also includes the Tunable Loop™ feature that allows the user to optimize the dynamic response of the converter to match the load with reduced amount of output capacitance leading to savings on cost and PWB area. The **FGLD12SR6040*A** converter of the *Tomodachi* Series delivers 40A of output current at a tightly regulated programmable and PMBus control output voltage of 0.45Vdc to 2.0Vdc. The thermal performance of the **FGLD12SR6040*A** is best-inclass: Little derating is needed up to 85°C, under natural convection. ## **Applications** - Intermediate Bus Architecture - Telecommunications - Data/Voice processing - · Distributed Power Architecture - Computing (Servers, Workstations) - Test Equipments ## **Data Sheet** #### **Features** - Compliant to RoHS EU "Directive 2011/65/EU - Delivers up to 40A (80W) - · High efficiency, no heatsink required - Negative and Positive ON/OFF logic - DOSA based - Small size: 33.02 x 13.46 x 10.9mm (1.3 in x 0.53 in x 0.429 in) - · Tape & reel packaging - Programmable output voltage from 0.6V to 2.0V via external resistor. Digitally adjustable down to 0.45Vdc - Digital interface through the PMBus™ # protocol - Tunable Loop™ to optimize dynamic output voltage response - Flexible output voltage sequencing EZ-SEQUENCE - Power Good signal - Fixed switching frequency with capability of external synchronization - Auto-reset output over-current protection - Remote ON/OFF - Ability to sink and source current - No minimum load required - Start up into pre-biased output - UL* 60950-1 2nd Ed. Recognized, CSA[†] C22.2 No. 60950-1-07 Certified, and VDE[‡] (EN60950-1 2nd Ed.) (Pending) - ISO** 9001 and ISO 14001 certified manufacturing facilities ^{*} UL is a registered trademark of Underwriters Laboratories, Inc. [†] CSA is a registered trademark of Canadian Standards Association. [‡] *VDE* is a trademark of Verband Deutscher Elektrotechniker e.V. ^{**} ISO is a registered trademark of the International Organization of Standards [#] The PMBus name and logo are registered trademarks of the System Management Interface Forum (SMIF) **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Absolute Maximum Ratings** Stresses in excess of the absolute maximum ratings may lead to degradation in performance and reliability of the converter and may result in permanent damage. | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |---------------------------------------|---------------------|------|-----|-----|-------| | ABSOLUTE MAXIMUM RATINGS ¹ | | | | | | | Input Voltage | Continuous | -0.3 | | 15 | Vdc | | SEQ, SYNC, Vs+ | | | | 7 | Vdc | | CLK, DATA, SMBALERT | | | | 3.6 | Vdc | | Operating Temperature | Ambient temperature | -40 | | 85 | °C | | Storage Temperature | | -55 | | 125 | °C | | Output Voltage | | 0.45 | | 2.0 | Vdc | ## **Electrical Specifications** All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted. | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |---|--|-----|------|------|------------------| | INPUT CHARACTERISTICS | | | | | | | Operating Input Voltage Range | | 4.5 | | 14.4 | Vdc | | Maximum Input Current | Vin=4.5V to 14V, Io-max | | | 24 | Adc | | Input No Load Current | Vout=2.0V | | 104 | | mA | | | Vout=0.6V | | 54.7 | | mA | | Input Stand-by Current | Vin=12V, module disabled | | 16.4 | | mA | | Inrush Transient, I2t | | | | 1 | A ² s | | Input Reflected-Ripple Current | Peak-to-peak (5Hz to 20MHz, 1uH source impedance; Vin=0 to 14V, Io-max | | 90 | | mAp-p | | Input Ripple Rejection (120Hz) | | | -60 | | dB | | Input Under Voltage Lockout | | | | | | | Turn-on Threshold | | | | 3.25 | Vdc | | Turn-off Threshold | | 2.6 | | | Vdc | | Hysteresis | | | 0.25 | | Vdc | | PMBus Adjustable Input Under Voltage Lockout Thresholds | | 2.5 | | 14 | Vdc | | Resolution of Adjustable Input Under Voltage Threshold | | | | 500 | mV | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Electrical Specifications (Continued)** | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |---|---|------|------|-------|----------| | OUTPUT CHARACTERISTICS | | | | | | | Output Voltage Set Point | With 0.1% tolerance for external resistor used to set output voltage | -1.0 | | +1.0 | %Vout | | Output Voltage Range | (Over all operating input voltage, resistive load and temperature conditions until end of life) | -3.0 | | +3.0 | %Vout | | Adjustment Range (selected by an external resistor) | Some output voltages may not be possible depending on the input voltage – see feature description section | 0.6 | | 2.0 | Vdc | | PMBus Adjustable Output Voltage Range | | -25 | | +25 | %Vout | | PMBus Output Voltage Adjustment Step Size | | 0.4 | | | %Vout | | Remote Sense Range | | | | 0.5 | Vdc | | Output Regulation | Line (Vin = min to max) | | | 6 | mV | | | Load (Io = min to max) | | | 10 | mV | | | Temperature (Tref=min to max) | | 0.4 | | %Vout | | Output Ripple and Noise | Vin=12V, Io= min to max, Co = 0.1uF+22uF ceramic capacitors | | | | | | Peak to Peak | 5MHz to 20MHz bandwidth | | 50 | 100 | mVp-p | | RMS | 5MHz to 20MHz bandwidth | | 20 | 38 | mVrms | | External Load Capacitance 1 | Plus full load (resistive) | | | | % | | Without the Tunable Loop | ESR ≥ 1mΩ | 6x47 | | 6x47 | uF | | With the Tunable Loop | ESR ≥ 0.15mΩ | 6x47 | | 7,000 | uF | | | ESR ≥ 10mΩ | 6x47 | | 8,500 | uF | | Output Current Range | (in either sink or source mode) | 0 | | 40 | Adc | | Output Current Limit Inception (Hiccup mode) | Current limit does not operate in sink mode | | 150 | | % lo-max | | Output Short-Circuit Current | Vo ≤ 250mV, Hiccup mode | | 21 | | Arms | | Efficiency | | | | | | | Vin = 12Vdc, Ta = 25°C, Io = max | Vout=1.8Vdc | | 91.5 | | % | | | Vout=1.2Vdc | | 88.5 | | % | | | Vout=0.6Vdc | | 81.3 | | % | ¹ External capacitors may require using the new Tunable Loop[™] feature to ensure that the module is stable as well as getting the best transient response. See the Tunable Loop[™] section for details. **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Electrical Specifications (Continued)** | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |---------------------------------|-------|-----|-----|-----|-------| | Switching Frequency | | | 400 | | kHz | | Frequency Synchronization | | | | | | | Synchronization Frequency Range | | 350 | | 480 | kHz | | High Level Input Voltage | | 2.0 | | | V | | Low Level Input Voltage | | | | 0.4 | V | | Input Current, SYNC | | | | 100 | nA | | Minimum Pulse Width, SYNC | | 100 | | | nS | | Maximum SYNC rise time | | 100 | | | nS | ## **General Specifications** | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |-----------------|--|-----|------------|-----|---------| | Calculated MTBF | lo = 0.8 * lo-max, Ta = 40°C
Telecordia Issue 2 Method 1 Case 3 | | 6,498,438 | | Hours | | Weight | | | 11.7(0.41) | | g (oz.) | ## **Feature Specifications** | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |-------------------------|--|------|-----|---------|-------| | ON/OFF Signal Interface | Vin = min to max, open collector or equivalent, Signal reference to GND | | | | | | Positive Logic | | | | | | | Logic High (Module ON) | | | | | | | Input High Current | | | | 10 | uA | | Input High Voltage | | 3.5 | | Vin-max | V | | Logic Low (Module OFF) | | | | | | | Input Low Current | | | | 1 | mA | | Input Low Voltage | | -0.3 | | 0.4 | V | | Negative Logic | On/Off pin is open collector/drain logic input with external pull-up resistor; signal reference to GND | | | | | | Logic High (Module OFF) | | | | | | | Input High Current | | | | 1 | mA | | Input High Voltage | | 2 | | Vin-max | V | | Logic Low (Module ON) | | | | | | | Input Low Current | | | | 10 | uA | | Input Low Voltage | | -0.2 | | 0.4 | V | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Feature Specifications** | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |---|---|-----|------|-----|-------| | Turn-On Delay and Rise Time | Vin = Vin-nom, Io = Io-max, Vo to within ±1% of steady state | | | | | | Case 1: On/Off input is enabled and then input power is applied | delay from instant at which Vin = Vin-
min until Vo = 10% of Vo-set) | | 1.1 | | ms | | Case 2: Input power is applied for at least one second and then the On/Off input is enabled | delay from instant at which Von/Off is enabled until Vo = 10% of Vo-set | | 700 | | us | | Output voltage Rise time | time for Vo to rise from 10% of Vo-set to 90% of Vo-set | | 1.5 | | ms | | Output voltage overshoot with or without maximum external capacitance | Ta = 25°C, Vin = Vin-min to Vin-max, Io = Io-min to Io-max | | | 3.0 | %Vout | | Over Temperature Protection | (See Thermal Considerations section) | | 145 | | °C | | PMBus Over Temperature Warning Threshold * | | | 130 | | °C | | Tracking Accuracy |
Vin-min to Vom-max, Io-min to Io-max, VSEQ < Vo | | | | | | Power-Up: 0.5V/ms | | | | 100 | mV | | Power-Down: 0.5V/ms | | | | 100 | mV | | Input Under Voltage Lockout | | | | | | | Turn-on Threshold | | | 4.25 | | Vdc | | Turn-off Threshold | | | 3.96 | | Vdc | | Hysteresis | | | 0.25 | | Vdc | | PMBus Adjustable Input Under Voltage Lockout Thresholds | | 2.5 | | 14 | Vdc | | Resolution of Adjustable Input Under Voltage Threshold | | | | 500 | mV | | PGOOD (Power Good) | | | | | | | Signal Interface Open Drain,
Vsupply ≤ 5VDC | | | | | | | Overvoltage threshold for PGOOD ON | | | 108 | | %Vout | | Overvoltage threshold for PGOOD OFF | | | 110 | | %Vout | | Undervoltage threshold for PGOOD ON | | | 92 | | %Vout | | Undervoltage threshold for PGOOD OFF | | | 90 | | %Vout | | Pulldown resistance of PGOOD pin | | | | 50 | Ω | | Sink current capability into PGOOD pin | | | | 5 | mA | ^{*} Over temperature Warning – Warning may not activate before alarm and unit may shutdown before warning. **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## Digital Interface Specifications | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |--|------------------------|------|-------|------|-------| | PMBus Signal Interface Characteristics | | | | | | | Input High Voltage (CLK, DATA) | | 2.1 | | 3.6 | V | | Input Low Voltage (CLK, DATA) | | | | 0.8 | V | | Input high level current (CLK, DATA) | | -10 | | 10 | uA | | Input low level current (CLK, DATA) | | -10 | | 10 | uA | | Output Low Voltage (CLK, DATA, SMBALERT#) | I _{OUT} =2mA | | | 0.4 | V | | Output high level open drain leakage current (DATA, SMBALERT#) | V _{OUT} =3.6V | 0 | | 10 | uA | | Pin capacitance | | | 0.7 | | pF | | PMBus Operating frequency range | Slave Mode | 10 | | 400 | kHz | | Data hold time | Receive Mode | 0 | | | nS | | | Transmit Mode | 300 | | | nS | | Data setup time | | 250 | | | nS | | Measurement System Characteristics | | | | | | | Read delay time | | 153 | 192 | 231 | us | | Output current measurement range | | 0 | | 40 | Α | | Output current measurement resolution | | 62.5 | | | mA | | Output current measurement gain accuracy (at 25°C) | | | | ±5 | % | | Output current measurement offset | | | | 0.1 | Α | | Vout measurement range | | 0 | | 2.0 | V | | Vout measurement resolution | | | 16.25 | | mV | | Vout measurement gain accuracy | | -2 | | 2 | LSB | | Vout measurement offset | | -3 | | 3 | LSB | | Vout measurement accuracy | | | 70 | | mV | | Vin measurement range | | 0 | | 14.4 | V | | Vin measurement resolution | | | 32.5 | | mV | | Vin measurement gain accuracy | | -2 | | 2 | LSB | | Vin measurement offset | | -5.5 | | 1.4 | LSB | | Vin measurement accuracy | | | ±3 | | % | 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Design Considerations** #### Input Filtering The **FGLD12SR6040*A** converter should be connected to a low ac-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability. To minimize input voltage ripple, ceramic capacitors are recommended at the input of the module. Fig-1 shows the input ripple voltage for various output voltages at 40A of load current with 4x47uF, 6x47uF or 8x47uF ceramic capacitors and an input of 12V. Fig-1: Input ripple voltage for various output voltages with various external ceramic capacitors at the input (40A load). Input voltage is 12V. Scope Bandwidth limited to 20MHz. #### Output Filtering The **FGLD12SR6040*A** is designed for low output ripple voltage and will meet the maximum output ripple specification with 0.1uF ceramic and 47uF ceramic capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change. To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. Fig-2 provides output ripple information for different external ## **Data Sheet** capacitance values at various Vo and a full load current of 40A. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table. Optimal performance of the module can be achieved by using the Tunable Loop $^{\text{TM}}$ feature described later in this data sheet. Fig-2: Output ripple voltage for various output voltages with external 6x47uF, 8x47uF or 10x47uF ceramic capacitors at the output (40A load). Input voltage is 12V. Scope Bandwidth limited to 20MHz. #### Safety Consideration For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1 2nd, CSA C22.2 No. 60950-1-07, DIN EN 60950-1:2006 + A11 (VDE0805 Teil 1 + A11):2009-11; EN 60950-1:2006 + A11:2009-03. (Pending) For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a fast acting fuse with a maximum rating of 30A, 100V (for example, Littlefuse 456 series) in the positive input lead. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Analog Feature Descriptions** #### Remote On/Off The module can be turned ON and OFF either by using the ON/OFF pin (Analog interface) or through the PMBus interface (Digital). The module can be configured in a number of ways through the PMBus interface to react to the two ON/OFF inputs: - Module ON/OFF can be controlled only through the analog interface (digital interface ON/OFF commands are ignored) - Module ON/OFF can be controlled only through the PMBus interface (analog interface is ignored) - Module ON/OFF can be controlled by either the analog or digital interface The default state of the module (as shipped from the factory) is to be controlled by the analog interface only. If the digital interface is to be enabled, or the module is to be controlled only through the digital interface, this change must be made through the PMBus. These changes can be made and written to non-volatile memory on the module so that it is remembered for subsequent use. ### Analog ON/OFF The **FGLD12SR6040*A** power modules feature an On/Off pin for remote On/Off operation. Two On/Off logic options are available. In the Positive Logic On/Off option, (device code suffix "P" - see Ordering Information), the module turns ON during a logic High on the On/Off pin and turns OFF during a logic Low. With the Negative Logic On/Off option, (device code suffix "N" - see Ordering Information), the module turns OFF during logic High and ON during logic Low. The On/Off signal should be always referenced to ground. For either On/Off logic option, leaving the On/Off pin disconnected will turn the module ON when input voltage is present. For positive logic modules, the circuit configuration for using the On/Off pin is shown in Fig-3. For negative logic On/Off modules, the circuit configuration is shown in Fig-4. ## **Data Sheet** Fig-3: Circuit configuration for using positive On/Off logic. Fig-4: Circuit configuration for using negative On/Off logic. #### Digital ON/OFF Please see the Digital Feature Descriptions section. ## Monotonic Start-up and Shut-down The module has monotonic start-up and shutdown behavior for any combination of rated input voltage, output current and operating temperature range. #### Startup into Pre-biased Output The module can start into a prebiased output as long as the prebias voltage is 0.5V less than the set output voltage. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Analog Output Voltage Programming** The output voltage of the module is programmable to any voltage from 0.6dc to 2.0Vdc by connecting a resistor between the Trim and SIG_GND pins of the module. Certain restrictions apply on the output voltage set point depending on the input voltage. These are shown in the Output Voltage vs. Input Voltage Set Point Area plot in Fig-5. The Upper Limit curve shows that for output voltages lower than 1V, the input voltage must be lower than the maximum of 14.4V. The Lower Limit curve shows that for output voltages higher than 0.6V, the input voltage needs to be larger than the minimum of 4.5V. Fig-5: Output Voltage vs. Input Voltage Set Point Area plot showing limits where the output voltage can be set for different input voltages. **Caution** – Do not connect SIG_GND to GND elsewhere in the layout. Fig-6: Circuit configuration for programming output voltage using an external resistor. Without an external resistor between Trim and SIG_GND pins, the output of the module will be 0.6Vdc. To calculate the value of the trim resistor, *Rtrim* for a desired output voltage, should be as per the following equation: ## **Data Sheet** $$R_{TRIM} = \frac{12}{(V_{O,REO} - 0.6)} [k \Omega]$$ Rtrim is the external resistor in kohm Vo-reg is the desired output voltage Note that the tolerance of a trim resistor will affect the tolerance of the output voltage. Standard 1% or 0.5% resistors may suffice for most applications; however, a tighter tolerance can be obtained by using two resistors in series instead of one standard value resistor. Table 1 provide Rtrim values required for some common output voltages. | Table 1: Trim F | Table 1: Trim Resistor Value | | | | | | |------------------------|------------------------------|--|--|--|--|--| | V _{O-REG} [V] | R _{TRIM} [kΩ] | | | | | | | 0.6 | Open | | | | |
| | 0.9 | 40 | | | | | | | 1.0 | 30 | | | | | | | 1.2 | 20 | | | | | | | 1.5 | 13.33 | | | | | | | 1.8 | 10 | | | | | | ## Digital Output Voltage Adjustment Please see the Digital Feature Descriptions section. #### Remote Sense The power module has a Remote Sense feature to minimize the effects of distribution losses by regulating the voltage between the sense pins (VS+ and VS-). The voltage drop between the sense pins and the Vout and GND pins of the module should not exceed 0.5V. #### **Analog Voltage Margining** Output voltage margining can be implemented in the module by connecting a resistor, Rmargin-up, from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, Rmargin-down, from the Trim pin to output pin for margining-down. Fig-7 shows the circuit configuration for output voltage margining. The POL Programming Tool, available at www.fdk.com under the Downloads section, also calculates the values of Rmargin-up and Rmargin-down for a specific output voltage and % margin. Please consult your local FDK FAE for additional details. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output Fig-7: Circuit Configuration for margining Output Voltage. #### Digital Output Voltage Margining Please see the Digital Feature Descriptions section. ## **Output Voltage Sequencing** The power module includes a sequencing feature, EZSEQUENCE that enables users to implement various types of output voltage sequencing in their applications. This is accomplished via an additional sequencing pin. When not using the sequencing feature, leave it unconnected. The voltage applied to the SEQ pin should be scaled down by the same ratio as used to scale the output voltage down to the reference voltage of the module. This is accomplished by an external resistive divider connected across the sequencing voltage before it is fed to the SEQ pin as shown in Fig-8. In addition, a small capacitor (suggested value 100pF) should be connected across the lower resistor R1. For all **Tomodachi** modules, the minimum recommended delay between the ON/OFF signal and the sequencing signal is 10ms to ensure that the module output is ramped up according to the sequencing signal. This ensures that the module soft-start routine is completed before the sequencing signal is allowed to ramp up. ## **Data Sheet** Fig-8: Circuit showing connection of the sequencing signal to the SEQ pin. When the scaled down sequencing voltage is applied to the SEQ pin, the output voltage tracks this voltage until the output reaches the set-point voltage. The final value of the sequencing voltage must be set higher than the set-point voltage of the module. The output voltage follows the sequencing voltage on a one-to-one basis. By connecting multiple modules together, multiple modules can track their output voltages to the voltage applied on the SEQ pin. The module's output can track the SEQ pin signal with slopes of up to 0.5V/msec during power-up or power-down. To initiate simultaneous shutdown of the modules, the SEQ pin voltage is lowered in a controlled manner. The output voltage of the modules tracks the voltages below their set-point voltages on a one-to-one basis. A valid input voltage must be maintained until the tracking and output voltages reach ground potential. Note that in all digital *Tomodachi* series of modules, the PMBus Output Undervoltage Fault will be tripped when sequencing is employed. This will be detected using the STATUS_WORD and STATUS_VOUT PMBus commands. In addition, the SMBALERT# signal will be asserted low as occurs for all faults and warnings. To avoid the module shutting down due to the Output Undervoltage Fault, the module must be set to continue operation without interruption as the response to this fault (see the description of the PMBus command VOUT_UV_FAULT_RESPONSE for additional information). 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### Over-Current Protection To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range. #### Digital Adjustable Overcurrent Warning Please see the Digital Feature Descriptions section. ## Over-Temperature Protection To provide protection in a fault condition, the unit is equipped with a thermal shutdown circuit. The unit will shut down if the over-temperature threshold of 145°C (typ) is exceeded at the thermal reference point Tref. Once the unit goes into thermal shutdown it will then wait to cool before attempting to restart. #### Digital Temperature Status via PMBus Please see the Digital Feature Descriptions section. # Digitally Adjustable Output Over and Under Voltage Protection Please see the Digital Feature Descriptions section. #### Input Under-Voltage Lockout (UVLO) At input voltages below the input under-voltage lockout limit, the module operation is disabled. The module will begin to operate at an input voltage above the under-voltage lockout turn-on threshold. # Digitally Adjustable Input Undervoltage Lockout Please see the Digital Feature Descriptions section. #### Digitally Adjustable Power Good Thresholds Please see the Digital Feature Descriptions section. #### Synchronization The module switching frequency can be synchronized to a signal with an external frequency within a specified range. Synchronization can be done by ## **Data Sheet** using the external signal applied to the SYNC pin of the module as shown in Fig-9, with the converter being synchronized by the rising edge of the external signal. The Electrical Specifications table specifies the requirements of the external SYNC signal. If the SYNC pin is not used, the module should free run at the default switching frequency. If synchronization is not being used, connect the SYNC pin to GND. Fig-9: External source connections to synchronize switching frequency of the module. # Paralleling with Active Load Sharing (-P Option) For additional power requirements, the FGLD12SR6040*A power module is also equipped with paralleling capability. Up to five modules can be configured in parallel, with active load sharing. To implement paralleling, the following conditions must be satisfied. - All modules connected in parallel must be frequency synchronized where they are switching at the same frequency. This is done by using the SYNC function of the module and connecting to an external frequency source. Modules can be interleaved to reduce input ripple/filtering requirements. - The share pins of all units in parallel must be connected together. The path of these connections should be as direct as possible. - The remote sense connections to all modules should be made that to the same points for the output, i.e. all VS+ and VS- terminals for all modules are connected to the power bus at the same points. Some special considerations apply for design of converters in parallel operation: When sizing the number of modules required for parallel operation, take note of the fact that current sharing has some tolerance. In addition, under transient conditions such as a dynamic load change and during startup, all converter output currents will not be equal. To allow for such 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output variation and avoid the likelihood of a converter shutting off due to a current overload, the total capacity of the paralleled system should be no more than 90% of the sum of the individual converters. As an example, for a system of four FGLS converters in parallel, the total current drawn should be less that 90% of (3 x 40A), i.e. less than 108 A. Similarly, four units can support a load less than 144A. - All modules should be turned ON and OFF together. This is so that all modules come up at the same time avoiding the problem of one converter sourcing current into the other leading to an overcurrent trip condition. To ensure that all modules come up simultaneously, the on/off pins of all paralleled converters should be tied together and the converters enabled and disabled using the on/off pin. Note that this means that converters in parallel cannot be digitally turned ON as that does not ensure that all modules being paralleled turn on at the same time. - If digital trimming is used to adjust the overall output voltage, the adjustments need to be made in a series of small steps to avoid shutting down the output. Each step should be no more than 20mV for each module. For example, to adjust the overall output voltage in a setup with two modules (A and B) in parallel from 1V to 1.1V, module A would be adjusted from 1.0 to 1.02V followed by module B from 1.0 to 1.02V, then each module in sequence from 1.02 to 1.04V and so on until the final output voltage of 1.1V is reached. - If the Sequencing function is being used to startup and shut down modules and the module is being held to 0V by the tracking signal then there may be small deviations on the module output. This is due to controller duty cycle limitations encountered in trying to hold the voltage down near 0V. - The share bus is not designed for redundant operation and the system will be non-functional upon failure of one of the units when multiple units are in parallel. In particular, if one of the converters shuts down during operation, the other converters may also shut down due to their outputs hitting current limit. In such a situation, unless a coordinated restart is ensured, the system may never properly restart since different converters will try to restart at different times causing an overload condition and subsequent shutdown. This situation can be avoided by having an external output voltage monitor circuit that detects a shutdown condition and forces all converters to shut down and restart together. When not using the active load share feature, share pins should be left unconnected. ##
Data Sheet Measuring Output Current, Output Voltage and Input Voltage Please see the Digital Feature Descriptions section. #### **Dual Layout** Identical dimensions and pin layout of Analog and Digital *Tomodachi* modules permit migration from one to the other without needing to change the layout. In both cases the trim resistor is connected between trim and signal ground. #### Power Good The module provides a Power Good (PGOOD) signal that is implemented with an open-drain output to indicate that the output voltage is within the regulation limits of the power module. The PGOOD signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going $\pm 10\%$ outside the setpoint value. The PGOOD terminal can be connected through a pullup resistor (suggested value $100 \text{K}\Omega)$ to a source of 5VDC or lower. ## Tunable Loop™ The module has a feature that optimizes transient response of the module called Tunable Loop™ External capacitors are usually added to the output of the module for two reasons: to reduce output ripple and noise (see Fig-2) and to reduce output voltage deviations from the steady-state value in the presence of dynamic load current changes. Adding external capacitance however affects the voltage control loop of the module, typically causing the loop to slow down with sluggish response. Larger values of external capacitance could also cause the module to become unstable. The Tunable LoopTM allows the user to externally adjust the voltage control loop to match the filter network connected to the output of the module. The Tunable LoopTM is implemented by connecting a series R-C between the SENSE and TRIM pins of the module, as shown in Fig-10. This R-C allows the user to externally adjust the voltage loop feedback compensation of the module. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output Fig-10: Circuit diagram showing connection of R_{TUNE} and C_{TUNE} to tune the control loop of the module. Recommended values of R_{TUNE} and C_{TUNE} for different output capacitor combinations are given in Table 2. Table 2 shows the recommended values of R_{TUNE} and C_{TUNE} for different values of ceramic output capacitors up to 1,000uF that might be needed for an application to meet output ripple and noise requirements. Selecting R_{TUNE} and C_{TUNE} according to Table 2 will ensure stable operation of the module. In applications with tight output voltage limits in the presence of dynamic current loading, additional output capacitance will be required. Table 3 lists recommended values of R_{TUNE} and C_{TUNE} in order to meet 2% output voltage deviation limits for some common output voltages in the presence of a 10A to 40A step change (50% of full load), with an input voltage of 12V. Please contact your FDK technical representative to obtain more details of this feature as well as for guidelines on how to select the right value of external R-C to tune the module for best transient performance and stable operation for other output capacitance values. | and C _{TUNE} for Vin=12V and various external ceramic capacitor combinations. | | | | | | | |--|--------|--------|---------|---------|---------|--| | Со | 6x47uF | 8x47uF | 10x47uF | 12x47uF | 20x47uF | | | RTUNE | 330Ω | 330Ω | 330Ω | 330Ω | 200Ω | | | CTUNE | 330pF | 820pF | 1200pF | 1500pF | 3300pF | | **Data Sheet** | and (2% (| Table 3: Recommended values of R _{TUNE} and C _{TUNE} to obtain transient deviation of 2% of Vout for a 20A step load with Vin=12V. | | | | | | |-------------------|--|--------------------------------|--------------------------------|--|--|--| | Vo | 1.8V | 1.2V | 0.6V | | | | | Со | 4x47uF+
6x330uF
Polymer | 4x47uF+
11x330uF
Polymer | 4x47uF+
12x680uF
Polymer | | | | | RTUNE | 220Ω | 200 Ω | 180 Ω | | | | | C _{TUNE} | 5600pF | 12nF | 47nF | | | | | △V | 34mV | 22mV | 12mV | | | | Note: The capacitors used in the Tunable Loop tables are 47 uF/3 m Ω ESR ceramic, 330 uF/12 m Ω ESR polymer capacitor and 680uF/12 m Ω polymer capacitor. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Digital Feature Description** #### PMBus Interface Capability The 40A Digital *Tomodachi* power modules have a PMBus interface that supports both communication and control. The PMBus Power Management Protocol Specification can be obtained from www.pmbus.org. The modules support a subset of version 1.1 of the specification (see Table 6 for a list of the specific commands supported). Most module parameters can be programmed using PMBus and stored as defaults for later use. All communication over the module PMBus interface must support the Packet Error Checking (PEC) scheme. The PMBus master must generate the correct PEC byte for all transactions, and check the PEC byte returned by the module. The module also supports the SMBALERT# response protocol whereby the module can alert the bus master if it wants to talk. For more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification. The module has non-volatile memory that is used to store configuration settings. Not all settings programmed into the device are automatically saved into this non-volatile memory, only those specifically identified as capable of being stored can be saved (see Table 6 for which command parameters can be saved to non-volatile storage). #### **PMBus Data Format** For commands that set thresholds, voltages or report such quantities, the module supports the "Linear" data format among the three data formats supported by PMBus. The Linear Data Format is a two byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent. The format of the two data bytes is shown below: The value is of the number is then given by Value = Mantissa x 2^{Exponent} #### PMBus Addressing The power module can be addressed through the PMBus using a device address. The module has 64 possible addresses (0 to 63 in decimal) which can be ## **Data Sheet** set using resistors connected from the ADDR0 and ADDR1 pins to SIG_GND. Note that some of these addresses (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 40, 44, 45, 55 in decimal) are reserved according to the SMBus specifications and may not be useable. The address is set in the form of two octal (0 to 7) digits, with each pin setting one digit. The ADDR1 pin sets the high order digit and ADDR0 sets the low order digit. The resistor values suggested for each digit are shown in Table 4 (1% tolerance resistors are recommended). Note that if either address resistor value is outside the range specified in Table 4, the module will respond to address 127. | Table 4: | | |----------|---------------------| | Digit | Resistor Value [kΩ] | | 0 | 10 | | 1 | 15.4 | | 2 | 23.7 | | 3 | 36.5 | | 4 | 54.9 | | 5 | 84.5 | | 6 | 130 | | 7 | 200 | The user must know which I²C addresses are reserved in a system for special functions and set the address of the module to avoid interfering with other system operations. Both 100kHz and 400kHz bus speeds are supported by the module. Connection for the PMBus interface should follow the High Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 for the 400kHz bus speed or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is available from the SMBus web site, smbus.org. Fig-11: Circuit showing connection of resistors used to set the PMBus address of the module. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### PMBus Enabled On/Off The module can also be turned on and off via the PMBus interface. The OPERATION command is used to actually turn the module on and off via the PMBus, while the ON_OFF_CONFIG command configures the combination of analog ON/OFF pin input and PMBus commands needed to turn the module on and off. Bit [7] in the OPERATION command data byte enables the module, with the following functions: 0 : Output is disabled1 : Output is enabled This module uses the lower five bits of the ON_OFF_CONFIG data byte to set various ON/OFF options as follows: | Bit Position | 4 | 3 | 2 | 1 | 0 | |---------------|-----|-----|-----|-----|-----| | Access | r/w | r/w | r/w | r/w | r | | Function | PU | CMD | CPR | POL | CPA | | Default Value | 1 | 0 | 1 | 1 | 1 | **PU**: Sets the default to either operate any time input power is present or for the ON/OFF to be controlled by the analog ON/OFF input and the PMBus OPERATION command. This bit is used together with the CP, CMD and ON bits to determine startup. | Bit Value | Action | |-----------|--| | 0 | Module powers up any time power is present regardless of state of the analog | | | ON/OFF pin | | | Module does not power up until commanded by the analog ON/OFF pin | | 1 | and the OPERATION command as programmed in bits [2:0] of the ON OFF CONFIG register. | **CMD**: The CMD bit controls how the device responds to the OPERATION command. | Bit Value | Action | |-----------|--| | 0 | Module ignores the ON bit in the OPERATION command | | | Module responds to the ON bit in the OPERATION command | **CPR**: Sets the response of the analog ON/OFF pin. This bit is used together with the CMD, PU and ON bits to determine startup. | Bit Value | Action | |-----------|--| | | Module ignores the analog ON/OFF pin, | | 0 | i.e. ON/OFF is only controlled through the | | | PMBUS via the OPERATION command | | 1 | Module
requires the analog ON/OFF pin | | ' | to be asserted to start the unit | ## **Data Sheet** #### PMBus Adjustable Soft Start Rise Time The soft start rise time can be adjusted in the module via PMBus. When setting this parameter, make sure that the charging current for output capacitors can be delivered by the module in addition to any load current to avoid nuisance tripping of the overcurrent protection circuitry during startup. The TON_RISE command sets the rise time in ms, and allows choosing soft start times between 600us and 9ms, with possible values listed in Table 5. Note that the exponent is fixed at -4 (decimal) and the upper two bits of the mantissa are also fixed at 0. | Table 5 | | | |-----------|----------|-------------| | Rise Time | Exponent | Mantissa | | 600us | 11100 | 0000001010 | | 900us | 11100 | 00000001110 | | 1.2ms | 11100 | 00000010011 | | 1.8ms | 11100 | 00000011101 | | 2.7ms | 11100 | 00000101011 | | 4.2ms | 11100 | 00001000011 | | 6.0ms | 11100 | 00001100000 | | 9.0ms | 11100 | 00010010000 | ## Output Voltage Adjustment Using the PMBus The VOUT_SCALE_LOOP parameter is important for a number of PMBus commands related to output voltage trimming, margining, over/under voltage protection and the PGOOD thresholds. The output voltage of the module is set as the combination of the voltage divider formed by RTrim and a $20k\Omega$ upper divider resistor inside the module, and the internal reference voltage of the module. The reference voltage V_{REF} is nominally set at 600mV, and the output regulation voltage is then given by $$V_{OUT} = \left[\frac{20000 + RTrim}{RTrim}\right] \times V_{REF}$$ Hence the module output voltage is dependent on the value of RTrim which is connected external to the module. The information on the output voltage divider ratio is conveyed to the module through the VOUT_SCALE_LOOP parameter which is calculated as follows: $$VOUT_SCALE_LOOP = \frac{RTrim}{20000 + RTrim}$$ The VOUT_SCALE_LOOP parameter is specified using the "Linear" format and two bytes. The upper five bits [7:3] of the high byte are used to set the exponent which is fixed at –9 (decimal). The remaining three bits of the high byte [2:0] and the eight bits of the lower byte are used for the mantissa. The default value of 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output the mantissa is 00100000000 corresponding to 256 (decimal), corresponding to a divider ratio of 0.5. The maximum value of the mantissa is 512 corresponding to a divider ratio of 1. Note that the resolution of the VOUT SCALE LOOP command is 0.2%. When PMBus commands are used to trim or margin the output voltage, the value of VREF is what is changed inside the module, which in turn changes the regulated output voltage of the module. The nominal output voltage of the module can be adjusted with a minimum step size of 0.4% over a ±25% range from nominal using the VOUT TRIM command over the PMBus. The VOUT TRIM command is used to apply a fixed offset voltage to the output voltage command value using the "Linear" mode with the exponent fixed at -10 (decimal). The value of the offset voltage is given by $$V_{OUT(offset)} = VOUT_TRIM \times 2^{-10}$$ This offset voltage is added to the voltage set through the divider ratio and nominal VREF to produce the trimmed output voltage. The valid range in two's complement for this command is -4000h to 3999h. The high order two bits of the high byte must both be either 0 or 1. If a value outside of the +/-25% adjustment range is given with this command, the module will set it's output voltage to the nominal value (as if VOUT TRIM had been set to 0), assert SMBALRT#, set the CML bit in STATUS BYTE and the invalid data bit in STATUS CML. #### Output Voltage Margining Using the PMBus The module can also have its output voltage margined **PMBus** commands. The command via VOUT MARGIN HIGH sets the margin high voltage, while the command VOUT MARGIN LOW sets the margin low voltage. Both the VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW commands use the "Linear" mode with the exponent fixed at -10 (decimal). Two bytes are used for the mantissa with the upper bit [7] of the high byte fixed at 0. The actual margined output voltage is a combination of the VOUT_MARGIN_HIGH or VOUT_MARGIN_LOW and the VOUT_TRIM values as shown below. $$V_{OUT(MH)} =$$ Note that the sum of the margin and trim voltages ## **Data Sheet** cannot be outside the ±25% window around the nominal output voltage. The data associated with VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW can be stored to non-volatile memory using the STORE DEFAULT ALL command. The module is commanded to go to the margined high or low voltages using the OPERATION command. Bits [5:2] are used to enable margining as follows: 00XX: Margin Off 0101: Margin Low (Ignore Fault) 0110 : Margin Low (Act on Fault) Margin High (Ignore Fault) 1010: Margin High (Act on Fault) #### PMBus Adjustable Overcurrent Warning The module can provide an overcurrent warning via the PMBus. The threshold for the overcurrent warning set using the parameter IOUT OC WARN LIMIT. This command uses the "Linear" data format with a two byte data word where the upper five bits [7:3] of the high byte represent the exponent and the remaining three bits of the high byte [2:0] and the eight bits in the low byte represent the mantissa. The exponent is fixed at -1 (decimal). The upper four bits of the mantissa are fixed at 0 while the lower seven bits are programmable with a default value of 55.5A (decimal). For production codes after April 2013, the value for IOUT_OC_WARN_LIMIT will be fixed at 57A. For earlier production codes the actual value for IOUT_OC_WARN_LIMIT will vary from module to module due to calibration during production testing. The resolution of this warning limit is 500mA. The value of the IOUT_OC_WARN_LIMIT can be non-volatile memory using to STORE_DEFAULT_ALL command. #### Temperature Status via PMBus The module can provide information related to temperature of the module through STATUS_TEMPERATURE command. The command returns information about whether the pre-set over temperature fault threshold and/or the warning threshold have been exceeded. ## PMBus Adjustable Output Over and Under Voltage Protection The module has output over and under voltage protection capability. The PMBus command VOUT_OV_FAULT_LIMIT is used to set the output over voltage threshold from four possible values: 108%, 110%, 112% or 115% of the commanded output voltage. command 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output VOUT_UV_FAULT_LIMIT sets the threshold that causes an output under voltage fault and can also be selected from four possible values: 92%, 90%, 88% or 85%. The default values are 112% and 88% of commanded output voltage. Both commands use two data bytes formatted as two's complement binary integers. The "Linear" mode is used with the exponent fixed to -10 (decimal) and the effective over or under voltage trip points given by: $$\begin{split} &V_{OUT(OV_REQ)} = (VOUT_OV_FAULT_LIMIT) \times 2^{-10} \\ &V_{OUT(UV_REQ)} = (VOUT_UV_FAULT_LIMIT) \times 2^{-10} \end{split}$$ Values within the supported range for over and undervoltage detection thresholds will be set to the nearest fixed percentage. Note that the correct value for VOUT_SCALE_LOOP must be set in the module for the correct over or under voltage trip points to be calculated. In addition to adjustable output voltage protection, the 40A Digital *Tomodachi* module can also be programmed for the response to the fault. The VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_RESPONSE commands specify the response to the fault. Both these commands use a single data byte with the possible options as shown below. - 1. Continue operation without interruption (Bits [7:6] = 00, Bits [5:3] = xxx) - Continue for four switching cycles and then shut down if the fault is still present, followed by no restart or continuous restart (Bits [7:6] = 01, Bits [5:3] = 000 means no restart, Bits [5:3] = 111 means continuous restart) - 3. Immediate shut down followed by no restart or continuous restart (Bits [7:6] = 10, Bits [5:3] = 000 means no restart, Bits [5:3] = 111 means continuous restart). - Module output is disabled when the fault is present and the output is enabled when the fault no longer exists (Bits [7:6] = 11, Bits [5:3] = xxx). Note that separate response choices are possible for output over voltage or under voltage faults. # PMBus Adjustable Input Undervoltage Lockout The module allows adjustment of the input under voltage lockout and hysteresis. The command VIN_ON allows setting the input voltage turn on threshold, while the VIN_OFF command sets the input voltage turn off threshold. For the VIN_ON command, possible values are 3.5V to 14V in 0.5V steps. For the VIN_OFF command, possible values are 3V to 14V in 0.5V steps. If other values are entered for either command, they will be mapped to the closest of the allowed values. ## **Data Sheet** Both the VIN_ON and VIN_OFF commands use the "Linear" format with two data bytes. The upper five bits represent the exponent (fixed at -2) and the remaining 11 bits represent the mantissa. For the mantissa, the four most significant bits are fixed at 0. #### Power Good The module provides a Power Good (PGOOD) signal that is implemented with an open-drain output to indicate that the output voltage is within the regulation limits of the power module. The PGOOD signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going outside the specified thresholds. The PGOOD thresholds are user selectable via the PMBus (the default values are as shown in the Feature Specifications Section). Each threshold is set up symmetrically above and below the nominal value. The POWER_GOOD_ON command sets the output voltage level above which PGOOD is asserted (lower threshold). For example, with a 1.2V nominal output voltage, the POWER_GOOD_ON threshold can
set the lower threshold to 1.14 or 1.1V. Doing this will automatically set the upper thresholds to 1.26 or 1.3V. The POWER_GOOD_OFF command sets the level below which the PGOOD command is de-asserted. This command also sets two thresholds symmetrically placed around the nominal output voltage. Normally, the POWER_GOOD_ON threshold is set higher than the POWER_GOOD_OFF threshold. Both POWER_GOOD_ON and POWER_GOOD_OFF commands use the "Linear" format with the exponent fixed at –10 (decimal). The two thresholds are given by $$V_{OUT(PGOOD_ON)} = (POWER_GOOD_ON) \times 2^{-10}$$ $V_{OUT(PGOOD_OFF)} = (POWER_GOOD_OFF) \times 2^{-10}$ Both commands use two data bytes with bit [7] of the high byte fixed at 0, while the remaining bits are r/w and used to set the mantissa using two's complement representation. Both commands also use the VOUT_SCALE_LOOP parameter so it must be set correctly. The default value of POWER_GOOD_ON is set at 1.1035V and that of the POWER_GOOD_OFF is set at 1.08V. The values associated with these commands can be stored in non-volatile memory using the STORE_DEFAULT_ALL command. The PGOOD terminal can be connected through a pullup resistor (suggested value $100 \mathrm{K}\Omega$) to a source of 5VDC or lower. 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output # Measurement of Output Current, Output Voltage and Input Voltage The module is capable of measuring key module parameters such as output current and voltage and input voltage and providing this information through the PMBus interface. Roughly every 200us, the module makes 16 measurements each of output current, voltage and input voltage. Average values of of these 16 measurements are then calculated and placed in the appropriate registers. The values in the registers can then be read using the PMBus interface. #### Measuring Output Current Using the PMBus The module measures current by using the inductor winding resistance as a current sense element. The inductor winding resistance is then the current gain factor used to scale the measured voltage into a current reading. This gain factor is the argument of the IOUT_CAL_GAIN command, and consists of two bytes in the linear data format. The exponent uses the upper five bits [7:3] of the high data byte in two-s complement format and is fixed at –15 (decimal). The remaining 11 bits in two's complement binary format represent the mantissa. During manufacture, each module is calibrated by measuring and storing the current gain factor into non-volatile storage. The current measurement accuracy is also improved by each module being calibrated during manufacture with the offset in the current reading. The IOUT_CAL_OFFSET command is used to store and read the current offset. The argument for this command consists of two bytes composed of a 5-bit exponent (fixed at -4d) and a 11-bit mantissa. This command has a resolution of 62.5mA and a range of -4000mA to +3937.5mA. The READ_IOUT command provides module average output current information. This command only supports positive or current sourced from the module. If the converter is sinking current a reading of 0 is provided. The READ_IOUT command returns two bytes of data in the linear data format. The exponent uses the upper five bits [7:3] of the high data byte in two-s complement format and is fixed at –4 (decimal). The remaining 11 bits in two's complement binary format represent the mantissa with the 11th bit fixed at 0 since only positive numbers are considered valid. Note that the current reading provided by the module is not corrected for temperature. The temperature corrected current reading for module temperature T_{Module} can be estimated using the following equation. $$I_{OUT,CORR} = \frac{I_{READ_OUT}}{1 + [(T_{IND} - 30) \times 0.00393]}$$ ## **Data Sheet** where I_{OUT_CORR} is the temperature corrected value of the current measurement, I_{READ_OUT} is the module current measurement value, T_{IND} is the temperature of the inductor winding on the module. Since it may be difficult to measure T_{IND}, it may be approximated by an estimate of the module temperature. ## Measuring Output Voltage Using the PMBus The module can provide output voltage information using the READ_VOUT command. The command returns two bytes of data all representing the mantissa while the exponent is fixed at -10 (decimal). During manufacture of the module, offset and gain correction values are written into the non-volatile memory of the module. The command VOUT_CAL_OFFSET can be used to read and/or write the offset (two bytes consisting of a 16-bit mantissa in two's complement format) while the exponent is always fixed at -10 (decimal). The allowed range for this offset correction is -125 to 124mV. The command VOUT_CAL_GAIN can be used to read and/or write the gain correction - two bytes consisting of a five-bit exponent (fixed at -8) and a 11-bit mantissa. The range of this correction factor is -0.125V to +0.121V, with a resolution of 0.004V. The corrected output voltage reading is then given by: $$V_{OUT}(Final) = [V_{OUT}(Initial) \times (1 + VOUT_CAL_GAIN)] + VOUT_CAL_OFFSET$$ #### Measuring Input Voltage Using the PMBus The module can provide output voltage information using the READ_VIN command. The command returns two bytes of data in the linear format. The upper five bits [7:3] of the high data form the two's complement representation of the mantissa which is fixed at –5 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa, with the 11th bit fixed at zero since only positive numbers are valid. During module manufacture, offset and gain correction values are written into the non-volatile memory of the module. The command VIN_CAL_OFFSET can be used to read and/or write the offset - two bytes consisting of a five-bit exponent (fixed at -5) and a 11-bit mantissa in two's complement format. The allowed range for this offset correction is -2 to 1.968V, and the resolution is 32mV. The command VIN_CAL_GAIN can be used to read and/or write the gain correction - two bytes consisting of a five-bit exponent (fixed at -8) and a 11-bit mantissa. The range of this correction factor is -0.125V to +0.121V, with a resolution of 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output 0.004V. The corrected output voltage reading is then given by: $V_{IN}(Final) = [V_{IN}(Initial) \times (1 + VIN_CAL_GAIN)] + VIN_CAL_OFFSET$ Reading the Status of the Module using the PMBus The module supports a number of PMBus status information commands. However, not all features are supported in these commands. A 1 in the bit position indicates the fault that is flagged. **STATUS_BYTE**: Returns one byte of information with a summary of the most critical device faults. | Bit Position | Flag | Default
Value | |--------------|--------------------------|------------------| | 7 | X | 0 | | 6 | OFF | 0 | | 5 | VOUT Overvoltage | 0 | | 4 | IOUT Overcurrent | 0 | | 3 | VIN Undervoltage | 0 | | 2 | Temperature | 0 | | 1 | CML (Comm. Memory Fault) | 0 | | 0 | None of the above | 0 | **STATUS_WORD**: Returns two bytes of information with a summary of the module's fault/warning conditions. | 1 | Ryte | |------|------| | I OW | DVIE | | Bit Position | Flag | Default
Value | |--------------|--------------------------|------------------| | 7 | X | 0 | | 6 | OFF | 0 | | 5 | VOUT Overvoltage | 0 | | 4 | IOUT Overcurrent | 0 | | 3 | VIN Undervoltage | 0 | | 2 | Temperature | 0 | | 1 | CML (Comm. Memory Fault) | 0 | | 0 | None of the above | 0 | **High Byte** | Bit
Position | Flag | Default
Value | |-----------------|--------------------------|------------------| | 7 | VOUT fault or warning | 0 | | 6 | IOUT fault or warning | 0 | | 5 | X | 0 | | 4 | X | 0 | | 3 | POWER_GOOD# (is negated) | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | **Data Sheet** **STATUS_VOUT**: Returns one byte of information relating to the status of the module's output voltage related faults. | Bit
Position | Flag | Default
Value | |-----------------|---------------|------------------| | 7 | VOUT OV Fault | 0 | | 6 | X | 0 | | 5 | X | 0 | | 4 | VOUT UV Fault | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | **STATUS_IOUT**: Returns one byte of information relating to the status of the module's output voltage related faults. | Bit Position | Flag | Default
Value | |--------------|-----------------|------------------| | 7 | IOUT OC Fault | 0 | | 6 | X | 0 | | 5 | IOUT OC Warning | 0 | | 4 | X | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | **STATUS_TEMPERATURE**: Returns one byte of information relating to the status of the module's temperature related faults. | Bit
Position | Flag | Default
Value | |-----------------|------------|------------------| | 7 | OT Fault | 0 | | 6 | OT Warning | 0 | | 5 | X | 0 | | 4 | X | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output **STATUS_CML**: Returns one byte of information relating to the status of the module's communication related faults. | Bit
Position | Flag | Default
Value | |-----------------|--------------------------------|------------------| | 7 | Invalid/Unsupported
Command | 0 | | 6 | Invalid/Unsupported
Command | 0 | | 5 | Packet Error Check Failed | 0 | | 4 | X | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | Other Communication Fault | 0 | | 0 | X | 0 | **MFR_VIN_MIN**: Returns minimum input voltage as two data bytes of information in Linear format (upper five bits are exponent – fixed at -2, and lower 11 bits are mantissa in two's complement format – fixed at 12) **MFR_VOUT_MIN**: Returns minimum output voltage as two data bytes of information in Linear format (upper five bits are exponent – fixed at -10, and lower 11 bits are mantissa in two's complement format – fixed at 614) MFR_SPECIFIC_00: Returns information related to the type of module. Bits [7:2] in the Low Byte indicate the module type (000100 corresponds to the
FGLD12SR6040 module). Bit [1:0] in the High Byte are used to indicate the manufacturer ID, with 01 reserved for FDK. #### Low Byte | Bit
Position | Flad | Default
Value | |-----------------|-------------|------------------| | 7:2 | Module Name | 000100 | | 1:0 | Reserved | 10 | #### **High Byte** | Bit
Position | Flag | Default
Value | |-----------------|------------------------|------------------| | 7:2 | Module Revision Number | None | | 1:0 | Manufacturer ID | 01 | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output Summary of Supported PMBus Commands Please refer to the PMBus 1.1 specification for more details of these commands. #### Table 6 | Hex
Code | Command | | | Bri | ef Des | cription | 1 | | | | Non-Volatile
Memory
Storage | |-------------|----------------------|---|--|--|--|--|---|---------------------|---------------------|----------|-----------------------------------| | | | Turn Module on or
Format | off. Als | so used | | | output
d Binar | |) | | | | | 00504504 | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 01 | OPERATION | Access | r/w | r | r/w | r/w | r/w | r/w | r | r | | | | | Function | On | Х | | Ma | rgin | | Χ | Х | | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | Х | Х | | | 02 | ON_OFF_CONFIG | Configures the ON/OFF functionality as a combination of analog ON/OFF pland PMBus commands Format Unsigned Binary Bit Position 7 6 5 4 3 2 1 0 Access r r r r r/w r/w r/w r/w r/w r | | | | | | | 0 | YES | | | | | Function | Х | Х | Х | pu | cmd | cpr | pol | сра | | | | | Default Value | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | | | 03 | CLEAR_FAULTS | Clear any fault bits that may have been set, also releases the SMBALERT# signal if the device has been asserting it. | | | | | | | | | | | | | setting in the mod | | | | | | | | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | WRITE_PROTECT | Access | r/w | r/w | r/w | х | Х | Х | Х | Х | | | | | Function | bit7 | bit6 | bit5 | Х | Х | Х | Х | X | | | 10 | | Default Value Bit5: 0 – Enables and ON Bit 6: 0 – Enables 1 – Disables 0 – Enables OPERA Bit7: 0 – Enables a 1 – Disables (bit5 and | all write
OFF_0
all write
all write
all write
all write | es exce
CONFI
es as po
es exce
ommar
s as pe
es exce | ept the 'G (bit 6 ermitted ept for the ermitted ept for the fo | X
in bit6
WRITE
and bit
d in bit5
he WRI
5 and b | X
or bit7
_PROT
i7 must
i or bit7
TE_PR
it7 musi
or bit6 | X ECT, C be 0) OTEC | X
OPERA
T and | TION | YES | | 11 | STORE_DEFAULT_ALL | Copies all current (EEPROM) on the | | | | | | | | | | | 12 | RESTORE_DEFAULT_ALL | Restores all currer non-volatile memo | | | | the mod | lule fror | n value | s in the | e module | | | 13 | STORE_DEFAULT_CODE | Copies the currer matches the value the module Bit Position Access Function | | | yte into | non-vo | | nemory
2
w | | | | | 14 | RESTORE_DEFAULT_CODE | Restores the current register setting in the module whose command code matches the value in the data byte from the value in the module non-volatile memory (EEPROM) Bit Position 7 6 5 4 3 2 1 0 Access w w w w w w w w w w w Function Command code | | | | | | | | | | | 20 | VOUT_MODE | The module has MODE set to Linear and Exponent set to -10. These values cannot be changed Bit Position 7 6 5 4 3 2 1 0 Access r r r r r r r r r r r r Function Mode Exponent Default Value 0 0 0 1 0 1 1 0 | | | | | | | | | | # **Tomodacki** Series ## FGLD12SR6040*A **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | Default Value | Hex
Code | Command | | | Bri | ef Desc | cription | 1 | | | | Non-Volatile
Memory
Storage | |--|-------------|---------------------|---------------|-----------|----------|----------|----------|-------------|----------|-------------|------------|-----------------------------------| | Sets the target voltage for margining the output low. Exponent is fixed at 1-10. | | | | et voltaç | ge to th | ie outpu | ut volta | ge com | mand v | /alue. E | Exponent | | | Access r/w r | | | | | | | vo's co | | | ary | | | | Function | | | | | | | | | | | + | | | Default Value | 20 | VOLIT TRIM | | r/w | r/w | r/w | | | r/w | r/w | r/w | VEC | | Bit Position 7 6 5 4 3 2 1 0 | 22 | VOU1_TRIM | | 0 | Λ | 0 | | | n | 0 | 1 | YES | | Access r/w r | | | | | | | | | | | | | | Default Value | | | | r/w | | Sets the target voltage for margining the output high. Exponent is fixed at -10. Format | | | | | | | | | 1 | | | | | Format | | | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sets the target voltage for margining the output low. Exponent is fixed at 10 | | | -10. | ltage fo | | | | | | | fixed at | | | Access | | | | <u> </u> | | | | | | | | | | VOUT_MARGIN_HIGH Function Default Value 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 | | | | | | | | | | | | | | Default Value | 25 | VOLIT MARGIN HIGH | | Γ | 17W | I f/W | | | I/W | I I/W | 17W | VES | | Bit Position 7 6 5 4 3 2 1 0 Access r/w r/ | 20 | VOOT_INIARGIIN_NIGN | | 0 | 0 | 0 | | | 1 | 0 | 1 | IES | | Function | | | | | | | | | | | | | | Default Value | | | | _ | r/w | | Sets the target voltage for margining the output low. Exponent is fixed at -10 Format | | | | | | | | | 1 | | | | | VOUT_MARGIN_LOW Format | | | Default Value | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | | Sets the scaling of the output voltage - equal to the feedback
resistor divider ratio Format Linear, two's complement binary Function Exponent Mantissa Default Value 0 0 0 0 0 0 0 0 0 | | | -10 | oltage f | | | | | | | fixed at | | | Access r r/w | | | | 7 | | | | | | | 0 | | | Default Value | | | | | | | | | | | | | | Bit Position 7 6 5 4 3 2 1 0 Access r/w r/w r/w r/w r/w r/w r/w r/w r/w Function Low Byte Default Value 0 1 0 1 0 0 0 0 1 Sets the scaling of the output voltage - equal to the feedback resistor divider ratio | 26 | VOUT_MARGIN_LOW | | | | | High | Byte | 1 | | | YES | | Access | | | | | | | | | | | | | | Sets the scaling of the output voltage - equal to the feedback resistor divider ratio Format | | | | | | | | | | | | | | Default Value | | | | 17 VV | 17 VV | 17 W | | | 17 W | 17 VV | 1700 | | | VOUT_SCALE_LOOP | | | | 0 | 1 | 0 | 1 | | 0 | 0 | 1 | | | VOUT_SCALE_LOOP | | | _ | f the ou | tput vo | Itage – | equal to | o the fe | edback | resisto | or divider | | | VOUT_SCALE_LOOP | | | Format | | Li | near, tv | vo's co | mpleme | ent bina | ary | | | | VOUT_SCALE_LOOP | | | | _ | | | | | | | | | | Default Value | 0.0 | VOLIT COM F : COS | | r | | | | r | | | | \/=0 | | Bit Position 7 6 5 4 3 2 1 0 | 29 | VOUT_SCALE_LOOP | | 1 | | | | 1 | | | | YES | | Access | | | | | | | | | | | | | | Sets the value of input voltage at which the module turns on | | | | | | | | | | 1 - | | | | Sets the value of input voltage at which the module turns on Format Linear, two's complement binary Bit Position 7 6 5 4 3 2 1 0 | | | Function | | | | | | | | | | | Format Linear, two's complement binary | | | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Bit Position 7 6 5 4 3 2 1 0 Access r r r r r r r Function Exponent Mantissa Default Value 1 1 1 1 0 0 0 0 Bit Position 7 6 5 4 3 2 1 0 Access r r/w r/w r/w r/w r/w r/w r/w Function Mantissa | | | | nput vo | | | | | | arv | | | | Access r r r r r r r r r | | | | 7 | | | | | | | 0 | | | Default Value | | | | | | | | | | _ | | | | Bit Position 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 | 35 | VIN ON | Function | | | Exponer | | | | | | VES | | Access r r/w r/w r/w r/w r/w r/w r/w r/w Function Mantissa | 33 | V 114_O14 | | | | | | | | | | 123 | | Function Mantissa | | | | | | | | | | | | | | | | | | Г | I/W | T/W | | | I/W | r/W | r/W | | | | | | Default Value | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | | | | | | | | | · · · · · · | | · · · · · · | | | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | Hex
Code | Command | Brief Description | | | | | | | | | Non-Volatile
Memory
Storage | |-------------|------------------------|---|-------------------|----------------------------|--|----------------------------|--------------------------|--|-------------------------|----------|-----------------------------------| | | | Sets the value of in | nput vo | ltage a | t which | the mo | dule tui | rns off | | | | | | | Format | l l l | | | | mpleme | | arv | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | T 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | 00 | VIII OFF | Function | | E | xponer | nt | | Mantissa | | | V/F0 | | 36 | VIN_OFF | Default Value | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | YES | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r/w | | | | Function | | | | | tissa | | | | | | | | Default Value | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | | | | Returns the value output current | of the | | | | | | | easured | | | | | Format
Bit Position | 7 | | | | mpleme | | | 0 | | | | | Bit Position Access | 7
r | 6
r | 5
r | 4
r | 3
r | 2
r | 1
r | 0
r/w | | | 38 | IOUT_CAL_GAIN | Function | 1 | | xponer | | 1 1 | | <u>।</u>
Mantiss | | YES | | 36 | IOUT_CAL_GAIN | Default Value | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 153 | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r/w | | | | Function | | | | Man | tissa | | | • | | | | | Default Value | | | | | | | | | | | 39 | IOUT_CAL_OFFSET | Returns the value output current Format Bit Position Access Function Default Value Bit Position Access Function Default Value | 7 r 1 7 r | 6
r
E
1
6
r | near, tv
5
r
Exponer
1
5
r/w | vo's co 4 r nt 0 4 r/w Mar | mpleme 3 r 0 3 r/w tissa | ent bina
2
r/w
1
1
2
r/w | ary 1 r Mantiss 1 1 r/w | 0
r | YES | | | | Delault Value | | v. vc | illabic t | asca c | ni iacio | ry Cano | nation | | | | | | Sets the voltage le
-10. | evel for | | | | ge fault. | | | fixed at | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 40 | VOLIT OV FALLET LINET | Access | r | r/w VEC | | 40 | VOUT_OV_FAULT_LIMIT | Function
Default Value | 0 | Λ | Λ . | | Byte | 1 | Λ | 1 | YES | | | | Bit Position | 7 | 0
6 | 0
5 | 0
4 | 3 | 2 | 1 | 0 | | | | | Access | r/w | | | | Function | 1 / VV | 1 / VV | 1/ 1/ | | Byte | 17 44 | 17 44 | 1/ ٧٧ | | | | | Default Value | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | | | | Instructs the modovervoltage fault Format | | | ι | Jnsigne | ed Binar | у | | | t | | 41 | VOUT_OV_FAULT_RESPONSE | Bit Position | 7 | 6
r/w | 5 | 4
r/w | 3 | 2
r | 1
r | 0 | YES | | | _ | Access
Function | r/w
RSP
[1] | RSP
[0] | r/w
RS[2] | r/w
RS[1] | r/w
RS[0] | r
X | r
X | r
X | | | | | Default Value | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | | | | | | <u> </u> | | | | <u></u> | _ | 1 | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | Hex
Code | Command | | | Bri | ef Desc | ription | 1 | | | | Non-Volatile
Memory
Storage | |-------------|------------------------|-------------------------------------|----------|--------|-------------|----------|-----------|---------|--------------|------------|-----------------------------------| | | | Sets the voltage le | evel for | | | | | | | s fixed at | | | | | Format | | | | vo's coi | mpleme | nt bina | ary | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r/w | | 44 | VOUT_UV_FAULT_LIMIT | Function | | | | | Byte | | | | YES | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r/w | | | | Function Default Value | 1 | 0 | 0 | LOW
0 | Byte
1 | 1 | 1 1 | 1 | | | | | Delault Value | | U | U | U | | ı | , ' | | | | | | Instructs the modundervoltage fault | | n what | | | | - | se to a | a output | | | | | Format Bit Position | 7 | 6 | 5 | | d Binar | | 1 1 | | | | 45 | VOUT_UV_FAULT_RESPONSE | Access | r/w | r/w | r/w | 4
r/w | r/w | 2
r | 1
r | 0
r | YES | | | _ | | RSP | RSP | | | | | | | | | | | Function | [1] | [0] | RS[2] | RS[1] | RS[0] | Х | Х | X | | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | | | Sets the output ov | ercurre | | | | not be | | | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | | Function | ' | | xponer | | ' | | Mantiss | | | | 46 | IOUT_OC_FAULT_LIMIT | Default Value | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | YES | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | | Function | | | | Man | tissa | | | | | | | | Default Value | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | | | | | Sets the output ov | ercurre | | | | | | | | | | | | Format | | | | | mpleme | | | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1
r | 0 | | | | | Access | r | r | r | r | r | r | r
Mantice | r | | | 4A | IOUT_OC_WARN_LIMIT | Function
Default Value | 1 | 1 | xponer
1 | ιι
1 | 1 | 0 | Mantiss
0 | a
0 | YES | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r/w | | | | Function | <u> </u> | | | | tissa | •• | | | | | | | Default Value | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | | | | | Sets the output v | | | | | | • | | ed high. | | | | | Format | | | | vo's co | mpleme | nt bina | ary | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r/w | | 5E | POWER_GOOD_ON | Function | | 1 | | | Byte | | | | YES | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r/w | | | | Function
Default Value | 0 | 1 | 1 | Low
0 | Byte
1 | 0 | 1 | 0 | | | | | Delauit Value | 1 0 | | | U | _ ' | U | <u> </u> | U | | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | | (continued) | | | | | | | | | | Non-Volatile | |-------------|---|--|-----------|-------------|------------|-------------------|---------------------|-----------|--|-----------|-------------------| | Hex
Code | Command | | | Bri | ef Desc | cription | 1 | | | | Memory
Storage | | | | Sets the output ve | oltage I | evel at | which | the PG | OOD r | oin is de | e-asser | ted low | Otorage | | | | Exponent is fixed | | CVCI UI | Willon | 11010 | loop i |)III 10 G | 0 00001 | tou low. | | | | | Format | | Li | near, tv | vo's coi | mpleme | ent bina | ry | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r/w | | 5F | POWER_GOOD_OFF | Function | 0 | ١ ، | ١ ، | | Byte | 1 | 0 | | YES | | | | Default Value Bit Position | 7 | 6 | 0
5 | 0 | 3 | 2 | 0
1 | 0 | | | | | Access | r/w | | | | Function | | | 1,744 | | Byte | 17.00 | 17.00 | 17.00 | | | | | Default Value | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | | | | | | | | | | | | | | | | | | Sets the rise time | of the c | nutnut v | oltage (| durina s | startun | | | | | | | | Format | OI THE C | | near, tv | | | ent bina | rv | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r/w | | | 61 | TON_RISE | Function | | E | xponer | nt | | | /lantiss
| | YES | | 01 | I ON_RISE | Default Value | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 123 | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r/w | | | | Function Default Value | 0 | 0 | 1 | Man
I 0 | tissa
1 | 0 | 1 | 0 | | | | | Delault Value | 0 | U | <u> </u> | U | 1 | U | <u>'</u> | U | | | | Returns one byte of information with a summary of the most critical motifaults Format Unsigned Binary | | | | | | | | | module | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 78 | STATUS_BYTE | Access | r | r | r | r | r | r | r | r | | | | | | Х | OFF | VOUT | IOUT | VIN_ | TEMP | CML | OTHE | | | | | Flag | | | _OV | _oc | UV | | | R | | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Returns two byt fault/warning cond Format Bit Position | | inform
6 | | vith a
Insigne | | - | the r | nodule's | | | | | Access | r | r | r | r | r | r | r | r | | | 79 | STATUS_WORD | Flag | VOUT | IOUT | Х | Х | PGO
OD | Х | Х | Х | | | | | Default Value | 0 | -0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | | Flag | Х | OFF | VOUT | IOUT | VIN_ | TEMP | CML | OTHE | | | | | Default Value | 0 | 0 | _OV | _OC | UV
0 | 0 | 0 | 0
0 | | | | | Delault Value | | | | | | | U | U | | | | | Returns one byte or related faults | of inforr | nation v | | | | | s outpu | t voltage | | | | | Format | <u> </u> | , , | | Jnsigne | | | | | | | 7A | STATUS_VOUT | Bit Position | 7 | | 6 5 | _ | 4
r | | 2 1
r r | 0 | | | | | Access
Flag | VOUT | | r r
X X | | r
JT UV | | r r
X X | r
X | | | | | Default Value | VOU! | | 0 0 | | 0 | | $\begin{array}{c c} & & \\ \hline 0 & 0 \end{array}$ | 0 | | | | | | | · I | <u> </u> | | - | . ~ . | - , , | | | | | | Returns one byte or related faults | of inforr | mation | | status | | | s outpu | t current | | | 7B | STATUS_IOUT | Bit Position | 7 | 1 | | 4 | <u>и Бінаі</u>
3 | | 2 | 1 0 | | | , 0 | 317103_1001 | Access | r | | rr | r | r | | r | rr | | | | | Flag | IOUT | | | X IOI | | _WARI | | XX | | | | | Default Value | 0 | | 0 0 | 0 | 0 | | 0 | 0 0 | | | | | | | | | | | | | | | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | Hex
Code | (continued) Command | | | Br | rief Des | cripti | on | | | | Brief Description | | | | | | | | | | |-------------|----------------------|----------------------------------|--------------|--|-----------------|-------------|--------|----------|---------|----------|---------------------|--------|----------|-----|--|--|--|--|--|--| | | | Returns one byte related faults | of infor | mation | n with th | ne stat | us of | f the i | modu | le's | temp | oera | ture | | | | | | | | | | | Format | | | | Unsigr | | | | | | | | | | | | | | | | 7D | STATUS_TEMPERATURE | Bit Position | 7 | | 6 | | 5 | 4 | 3 | 2 | 1 | _ | 0 | | | | | | | | | | | Access | r | | r | | r | r | r | r | r | | r | | | | | | | | | | | Flag | _ | AULT | _ | /ARN | X | X | X | X | X | | X | | | | | | | | | | | Default Value | 0 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | (| 0 | | | | | | | | | | | Returns one by communication rel | | | | | | | | th | e m | nodu | ıle's | | | | | | | | | | | Format | | | | Unsigr | | | | | _ | | _ | | | | | | | | | 70 | STATUS CMI | Bit Position | 7 | | 6 | 5 | 4 | 3 | 2 | | 1 | | 0 | | | | | | | | | 7E | STATUS_CML | Access | r | | r | r | r | r | r | 0 | r
thor | | r | | | | | | | | | | | Flag | Inva
Comm | | Invalid
Data | PEC
Fail | Х | Х | Х | Co | ther
omm
ault | | X | | | | | | | | | | | Default Value | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | (| 0 | | | | | | | | | | | Returns the value | of the i | nput v | oltage a | applied | to th | ne mo | odule | | | | | | | | | | | | | | | Format
Bit Position | 7 | | inear, t | | | | | | 4 | ^ | | | | | | | | | | | | Access | 7
r | 6
r | 5
r | 4
r | | 3
r | 2
r | + | 1
r | 0
r | _ | | | | | | | | | | | Function | ı | | Expone | - | | <u> </u> | | | ı
ıtissa | | | | | | | | | | | 88 | READ_VIN | Default Value | 1 | 1 | 0 | 1 | | 1 | 0 | | 0 | 0 | | | | | | | | | | | | Bit Position | 7 | 6 | 5 | 4 | | 3 | 2 | | 1 | 0 | | | | | | | | | | | | Access | r | r | r | r | _ | r | r | _ | r | r | | | | | | | | | | | | Function | | | <u> </u> | | antiss | | • | <u> </u> | | | | | | | | | | | | | | Default Value | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | | | | | | | | | | | Returns the value -10. | of the o | of the output voltage of the module. Exponent is fixed at Linear, two's complement binary | Bit Position | 7 | 6 | 5 | 4 | | 3 | 2 | _ | 1 | 0 | | | | | | | | | | | | Access | r | r | r | r | _ | r | | - | r | r | | | | | | | | | | 8B | READ_VOUT | Function | - | | | | antiss | | • | <u> </u> | | | | | | | | | | | | | | Default Value | 0 | 0 | 0 | 0 | _ | 0 | 0 | - | 0 | 0 | | | | | | | | | | | | Bit Position | 7 | 6 | 5 | 4 | | 3 | 2 | | 1 | 0 | | | | | | | | | | | | Access | r | r | r | r | | r | r | Ĺ | r | r | | | | | | | | | | | | Function | | | | Ma | antiss | sa | | | | | | | | | | | | | | | | Default Value | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | | | | | | | | | | | Returns the value | of the c | | | | | | at him | or: | | | | | | | | | | | | | | Format Bit Position | 7 | 6 | _inear, t | wo's c | | 3 | nt bina | | 1 | 0 | \dashv | | | | | | | | | | | Access | r | r | r | r | + | r | r | - | r | r | | | | | | | | | | | | Function | 1 | | Expone | | | • | | | ı
ıtissa | | \dashv | | | | | | | | | 8C | READ_IOUT | Default Value | 1 | 1 | 1 | 0 | | 0 | 0 | _ | 0 | 0 | \dashv | | | | | | | | | | | Bit Position | 7 | 6 | 5 | 4 | | 3 | 2 | _ | 1 | 0 | _ | | | | | | | | | | | Access | r | r | r | r | _ | r | r | - | r | r | | | | | | | | | | | | Function | | | | | antiss | | | 1 | · | | \dashv | | | | | | | | | | | Default Value | 0 | 0 | 0 | 0 | | 0 | 0 | (| 0 | 0 | | | | | | | | | | | | Returns one byte (read only) | indicat | ing th | | | | | | ИВи | s Sp | oec. | 1.1 | | | | | | | | | 98 | PMBUS_REVISION | Format | | | | Unsigr | | | ′ | | | | | YES | | | | | | | | 98 | PMBUS_REVISION | Bit Position | 7 | 6 | 5 | 4 | | 3 | 2 | + | 1 | 0 | _ | 123 | | | | | | | | | | Access | r | r | r | r | - 1 | r | r | | r | r | | | | | | | | | | | | Default Value | 0 | 0 | 0 | 1 | _ | 0 | 0 | _ | 0 | 1 | | | | | | | | | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | Hex
Code | Command | Brief Description | | | | | | | | | Non-Volatile
Memory
Storage | |-------------|-----------------|---|----------|-----------|----------|----------|---------|----------|----------------|--|-----------------------------------| | | | Returns the minim | um inpı | | | | | | | e at (read only) | | | | | Format | | | | vo's co | | ent bina | | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | A0 | MED VIN MIN | Function | | E | Exponei | nt | | N | Mantiss | а | YES | | AU | MFR_VIN_MIN | Default Value | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | TES | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | | Function | | | | Man | tissa | | | | | | | | Default Value | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | | | | Returns the minim | um out | put volt | tage po | ssible f | rom the | e modul | e (read | only) | | | | | Format | | | | | | ent bina | | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | MED MONT | Function | | · · · · · | | Man | tissa | | | • | | | A4 | MFR_VOUT_MIN | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | YES | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | | Function | | <u>'</u> | _ ' | | tissa | | <u>'</u> | ' ' | | | | | Default Value | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | | | | Delault Value | | ' | <u>'</u> | J | . 0 | <u>'</u> | _ ' | | | | | | Returns module na | ame inf | ormatio | | | | | | | | | | | Format | | | | | d Bina | | • | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | D0 | MED SPECIFIC OO | Function | | Modu | ıle Revi | sion Nu | umber | | Manufa | cturer ID | YES | | DU | MFR_SPECIFIC_00 | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | IES | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r | r | r | r | r | r | | | | | Function | | | Module | Name | ! | | Rese | erved | | | | | Default Value | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | | | Applies an offset to in module measur Exponent is fixed a | ements | of the | output | voltag | e (betv | | 25mV a | | | | | | Bit Position | 7 | 6 | near, tv | 4 4 | mpieme | ent bina | iry
I 1 | 0 | | | | | Access | r/w | r | | | | r | r | | | | D4 | VOUT_CAL_OFFSET | | 1/W | 1 | r | r
Man | r | | | r | YES | | | - - | Function Default Value | V | Λ | 0 | | tissa | 1 0 | | | | | | | | 7 | 0
6 | 5 | 0
4 | 3 | 2 | 0 | 0 | | | | | Bit Position | | | | | | | | | | | | | Access | r/w | | | | Function | ., | \ \ / | | | tissa | 1 1/ | l \/ | | | | | | Default Value | V | V | V | V | V | V | V | V | | | | | Applies a gain cor
gain errors in mod
0.121) | | easurer | ments o | of the o | utput v | oltage | (betwee | | | | | | Format | | | | | | ent bina | | | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | D5 | VOUT_CAL_GAIN | Access | r | r | l r | r | r | r | r | r/w | YES | | | | Function | <u> </u> | | Exponei | _ | | | Mantiss | | 15 | | | | Default Value | 1 | 1 | 0 | 0 | 0 | 0 | 0 | V | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r/w | | | | Function | | | | Man | tissa | | | | | | | | Default Value | V | V | V | V | V |
V | V | V | | | | | | | | · | | · | · | · | | | **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output | Hex
Code | Command | | Brief Description | | | | | | | | Non-Volatile
Memory
Storage | |-------------|---|--|-------------------|-------------|---------|--------|---------|--------|----------|---------|-----------------------------------| | | | Applies an offset of offset errors in m +1.968V) Format | odule | measu
Li | rements | of the | e input | voltag | e (betv | veen -2 | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | D6 | VIN CAL OFFSET | Access | r | r | r | r | r/w | r | <u>r</u> | r/w | YES | | | | Function | | | xponer | | | | /antiss | - | 0 | | | | Default Value | 1 | 1 | 0 | 1 | V | 0 | 0 | V | | | | | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | Access | r | r | r/w | r/w | r/w | r/w | r/w | r/w | | | | | Function | | | | | tissa | | | • | | | | | Default Value | 0 | 0 | V | V | V | V | V | V | | | D7 | Applies a gain correction to the READ_VIN command results to calibrate out ga errors in module measurements of the input voltage (between -0.125 and 0.121) Format Linear, two's complement binary Bit Position 7 6 5 4 3 2 1 0 Access r r r r r r r/w r r r/w | | | | | | | | YES | | | 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## Characterization #### Overview The converter has been characterized for several operational features, including efficiency, thermal derating (maximum available load current as a function of ambient temperature and airflow), ripple and noise, transient response to load step changes, start-up and shutdown characteristics. Figures showing data plots and waveforms for different output voltages are presented in the following pages. #### Thermal Considerations Power modules operate in a variety of thermal environments; however, sufficient cooling should always be provided to help ensure reliable operation. Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test set-up is shown in Fig-12. The preferred airflow direction for the module is in Fig-13. Fig-12: Thermal test set-up The maximum available load current, for any given set of conditions, is defined as the lower of: - (i) The output current at which the temperature of any component reaches 120°C, or - (ii) The current rating of the converter (40A) ## **Data Sheet** A maximum component temperature of 120°C should not be exceeded in order to operate within the derating curves. Thus, the temperature at the thermocouple location shown in Fig-13 should not exceed 120°C in normal operation. Note that continuous operation beyond the derated current as specified by the derating curves may lead to degradation in performance and reliability of the converter and may result in permanent damage. Fig-13: Preferred airflow direction and location of hot-spot of the module (Tref). ## **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### Characteristic Curves The following figures provide typical characteristics for the 40A Digital *Tomodachi* at 1.8Vo and 25°C Fig-14. Converter Efficiency versus Output Current. Fig-15. Derating Output Current versus Ambient Temperature and Airflow. Fig-16. Typical output ripple and noise (CO=6x47uF ceramic, VIN = 12V, Io = Io,max,). Fig-17. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, Cout=6x330uF, CTune=5.6nF & RTune=220 ohms Fig-18. Typical Start-up Using On/Off Voltage (Io = Io,max). Fig-19. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io.max). **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### Characteristic Curves The following figures provide typical characteristics for the 40A Digital Tomodachi at 1.2Vo and 25°C Fig-20. Converter Efficiency versus Output Current. Fig-22. Typical output ripple and noise (CO=6x47uF ceramic, VIN = 12V, Io = Io,max,). Fig-24. Typical Start-up Using On/Off Voltage (Io = Io,max). Fig-21. Derating Output Current versus Ambient Temperature and Airflow. TIME, t (20us /div) Fig-23. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, Cout=6x330uF, CTune=12nF & RTune=200 ohms Fig-25. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io,max). **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### Characteristic Curves The following figures provide typical characteristics for the 40A Digital *Tomodachi* at 0.6Vo and 25°C Fig-26. Converter Efficiency versus Output Current. Fig-28. Typical output ripple and noise (CO=6x47uF ceramic, VIN = 12V, Io = Io,max,). Fig-30. Typical Start-up Using On/Off Voltage (Io = Io,max). Fig-27. Derating Output Current versus Ambient Temperature and Airflow. Fig-29. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, Cout=12x680uF+6x47uF, CTune=47uF, RTune=180 ohms Fig-31. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io,max). **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### **Example Application Circuit** Requirements: Vin: 12V Vout: 1.8V lout: 30A max., worst case load transient is from 20A to 30A Δ Vout: 1.5% of Vout (27mV) for worst case load transient Vin, ripple 1.5% of Vin (180mV, p-p) CI1 Decoupling cap - 1x0.01uF/16V ceramic capacitor (e.g. Murata LLL185R71E103MA01) CI2 3x22uF/16V ceramic capacitor (e.g. Murata GRM32ER61C226KE20) CI3 470uF/16V bulk electrolytic CO2 4x47uF/6.3V ceramic capacitor (e.g. Murata GRM31CR60J476ME19) CO3 6x330uF/6.3V Polymer (e.g. Sanyo Poscap) CTune 5600pF ceramic capacitor (can be 1206, 0805 or 0603 size) RTune 220Ω SMT resistor (can be 1206, 0805 or 0603 size) RTrim $10k\Omega$ SMT resistor (can be 1206, 0805 or 0603 size, recommended tolerance of 0.1%) Note: The DATA, CLK and SMBALRT pins do not have any pull-up resistors inside the module. Typically, the SMBus master controller will have the pull-up resistors as well as provide the driving source for these signals. **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### Mechanical Drawing All dimensions are in millimeters (inches) Tolerances: x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.) [unless otherwise indicated] x.xx mm \pm 0.25 mm (x.xxx in \pm 0.010 in.) | Pin Connections | | | | | | | | | | | | | |-----------------|----------|------|-----------|--|--|--|--|--|--|--|--|--| | Pin# | Function | Pin# | Function | | | | | | | | | | | 1 | ON/OFF | 11 | SIG_GND | | | | | | | | | | | 2 | Vin | 12 | VS- | | | | | | | | | | | 3 | SEQ | 13 | CLK | | | | | | | | | | | 4 | GND | 14 | DATA | | | | | | | | | | | 5 | Vout | 15 | SYNC | | | | | | | | | | | 6 | Trim | 16 | PG | | | | | | | | | | | 7 | VS+ | 17 | SMBALERT# | | | | | | | | | | | 8 | GND | 18 | ADDRESS 0 | | | | | | | | | | | 9 | SHARE | 19 | ADDRESS 1 | | | | | | | | | | | 10 | GND | | | | | | | | | | | | ## **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### Recommended Pad Layout All dimensions are in millimeters (inches) Tolerances: x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.) [unless otherwise indicated] x.xx mm \pm 0.25 mm (x.xxx in \pm 0.010 in.) | Pin Connections | | | | | | | | | | |-----------------|----------|------|-----------|--|--|--|--|--|--| | Pin# | Function | Pin# | Function | | | | | | | | 1 | ON/OFF | 11 | SIG_GND | | | | | | | | 2 | Vin | 12 | VS- | | | | | | | | 3 | SEQ | 13 | CLK | | | | | | | | 4 | GND | 14 | DATA | | | | | | | | 5 | Vout | 15 | SYNC | | | | | | | | 6 | Trim | 16 | PG | | | | | | | | 7 | VS+ | 17 | SMBALERT# | | | | | | | | 8 | GND | 18 | ADDRESS 0 | | | | | | | | 9 | SHARE | 19 | ADDRESS 1 | | | | | | | | 10 | GND | | | | | | | | | ## **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## **Packaging Details** The 40A Digital *Tomodachi* modules are supplied in tape & reel as standard. Modules are shipped in quantities of 140 modules per reel. All Dimensions are in millimeters and (in inches). #### Reel Dimensions: Outside Dimensions: 330.2 mm (13.00 ») Inside Dimensions: 177.8 mm (7.00") Tape Width: 56.00 mm (2.205") 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output #### **Surface Mount Information** #### Pick and Place The 40A Digital *Tomodachi* modules use an open frame construction and are designed for a fully automated assembly process. The modules are fitted with a label designed to provide a large surface area for pick and place operations. The label meets all the requirements for surface mount processing, as well as safety standards, and is able to withstand reflow temperatures of up to 300°C. The label also carries product information such as product code, serial number and the location of manufacture. #### Nozzle Recommendations The module weight has been kept to a minimum by using open frame construction. Variables such as nozzle size, tip style, vacuum pressure and placement speed should be considered to optimize this process. The minimum recommended inside nozzle diameter for reliable operation is 3mm. The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 7mm. #### Bottom Side / First Side Assembly This module is not recommended for assembly on the bottom side of a customer board. If such an assembly is attempted, components may fall off the module during the second reflow process. #### Lead Free Soldering The modules are lead-free (Pb-free) and RoHS compliant and fully compatible in a Pb-free soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect long-term
reliability. #### Pb-free Reflow Profile Power Systems will comply with J-STD-020 Rev. C (Moisture / Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb-free solder profiles and MSL classification procedures. This standard provides a recommended forced-air-convection reflow profile based on the volume and thickness of the package (table 4-2). The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). The recommended linear reflow profile using Sn/Ag/Cu solder is shown in Fig-51. Soldering outside of the recommended profile requires testing to verify results and performance. ## **Data Sheet** ## MSL Rating The 40A Digital **Tomodachi** modules have a MSL rating of 2a. ## Storage and Handling The recommended storage environment and handling procedures for moisture-sensitive surface mount packages is detailed in J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices). Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of $\leq 30^{\circ}\text{C}$ and 60% relative humidity varies according to the MSL rating (see J-STD-033A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: $< 40^{\circ}\text{C}, < 90\%$ relative humidity. Fig-32: Recommended linear reflow profile using Sn/Ag/Cu solder. # Post Solder Cleaning and Drying Considerations Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to *Board Mounted Power Modules:* Soldering and Cleaning Application Note (AN04-001). **Data Sheet** 4.5-14.4Vdc Input, 40A, 0.45-2.0Vdc Output ## Part Number System | Product
Series | Shape | Regulation | Input
Voltage | Mounting
Scheme | Output
Voltage | Rated
Current | ON/OFF
Logic | Pin
Shape | |-------------------|-------|--------------------|------------------|--------------------|---------------------------------------|------------------|----------------------------|--------------| | FG | L | D | 12 | S | R60 | 40 | * | Α | | Series
Name | Large | D: Digital Feature | Typ=12V | Surface
Mount | 0.6V
(Programmable:
See page 9) | 40A | N: Negative
P: Positive | Standard | #### Cautions NUCLEAR AND MEDICAL APPLICATIONS: FDK Corporation products are not authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the written consent of FDK Corporation. SPECIFICATION CHANGES AND REVISIONS: Specifications are version-controlled, but are subject to change without notice.