MBR60L45CTG, MBR60L45WTG # Switch-mode Power Rectifier 45 V, 60 A #### **Features and Benefits** - Low Forward Voltage - Low Power Loss/High Efficiency - High Surge Capacity - 175°C Operating Junction Temperature - 60 A Total (30 A Per Diode Leg) - Guard-Ring for Stress Protection - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **Applications** - Power Supply Output Rectification - Power Management - Instrumentation #### **Mechanical Characteristics:** - Case: Epoxy, Molded - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight (Approximately): 1.9 Grams (TO–220) 4.3 Grams (TO–247) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds - Shipped 50 Units Per Plastic Tube for TO–220 and 30 Units Per Plastic Tube for TO–247 #### ON Semiconductor® www.onsemi.com ## SCHOTTKY BARRIER RECTIFIERS 60 AMPERES, 45 VOLTS B60L45 = Device Code A = Assembly Location Y = Year WW = Work Week AKA = Polarity Designator G = Pb-Free Device #### **ORDERING INFORMATION** | Device | Package | Shipping | |-------------|---------------------|---------------| | MBR60L45CTG | TO-220
(Pb-Free) | 50 Units/Rail | | MBR60L45WTG | TO-247
(Pb-Free) | 30 Units/Rail | ## MBR60L45CTG, MBR60L45WTG #### MAXIMUM RATINGS (Per Diode Leg) | Rating | Symbol | Value | Unit | |---|--|-----------------|------| | Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 45 | V | | Average Rectified Forward Current (Rated V_R) T_C = 145°C for MBR60L45CTG (Rated V_R) T_C = 165°C for MBR60L45WTG | I _{F(AV)} | 30 | А | | Peak Repetitive Forward Current
(Rated V _R , Square Wave, 20 kHz) | I _{FRM} | 60 | А | | Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) | IFSM | 200 | А | | Operating Junction Temperature (Note 1) | TJ | -65 to +175 | °C | | Storage Temperature | T _{stg} | -65 to +175 | °C | | Voltage Rate of Change (Rated V _R) | dv/dt | 10,000 | V/μs | | ESD Ratings: Machine Model = C
Human Body Model = 3B | | > 400
> 8000 | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | | Characteristic | Symbol | Value | Unit | |--|---|--|-------------|------| | Maximum Thermal Resistance
(MBR60L45CTG)
(MBR60L45WTG) | Junction-to-CaseJunction-to-Case | R _θ JC
R _θ JC | 1.9
0.59 | °C/W | #### **ELECTRICAL CHARACTERISTICS** (Per Diode Leg) | Characteristic | Symbol | Value | Unit | |--|----------------|------------------------------|------| | Maximum Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(I_F=30~A,~T_C=25^\circ\text{C})\\ &(I_F=30~A,~T_C=125^\circ\text{C})\\ &(I_F=60~A,~T_C=25^\circ\text{C})\\ &(I_F=60~A,~T_C=125^\circ\text{C}) \end{aligned} $ | VF | 0.55
0.53
0.73
0.76 | V | | Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, T _C = 25°C) (Rated DC Voltage, T _C = 125°C) | i _R | 1.2
275 | mA | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. ^{1.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$. ### MBR60L45CTG, MBR60L45WTG #### **TYPICAL CHARACTERISTICS** Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage **Figure 3. Typical Reverse Current** **Figure 4. Maximum Reverse Current** Figure 5. Current Derating for MBR60L45CTG Figure 6. Current Derating for MBR60L45WTG ### MBR60L45CTG, MBR60L45WTG #### **TYPICAL CHARACTERISTICS** Figure 7. Forward Power Dissipation Figure 8. Capacitance Figure 9. Thermal Response Junction-to-Case for MBR60L45CTG Figure 10. Thermal Response Junction-to-Case for MBR60L45WTG **DATE 17 MAR 2017** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. SLOT REQUIRED, NOTCH MAY BE ROUNDED. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY - LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY - ©P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.70 | 5.30 | | | A1 | 2.20 | 2.60 | | | b | 1.07 | 1.33 | | | b2 | 1.65 | 2.35 | | | b4 | 2.60 | 3.40 | | | С | 0.45 | 0.68 | | | D | 20.80 | 21.34 | | | E | 15.50 | 16.25 | | | E2 | 4.32 | 5.49 | | | е | 5.45 BSC | | | | F | 2.655 | | | | L | 19.80 | 20.80 | | | L1 | 3.81 | 4.32 | | | P | 3.55 | 3.65 | | | Q | 5.40 | 6.20 | | | S | 6.15 BSC | | | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location Υ = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98AON16119F | AON16119F Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | TO-247 | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales