19-4327; Rev 0; 10/08

EVALUATION KIT AVAILABLE

General Description

Applications

The MAX9737 mono 7W Class D amplifier provides a high-performance, thermally efficient amplifier solution that offers up to 88% efficiency at a 12V supply. The device operates from 8V to 28V and provides a high 80dB PSRR, eliminating the need for a regulated power supply.

Filterless modulation allows the MAX9737 to pass CE EMI limits with 1m cables using only a low-cost ferrite bead and small-value capacitor on each output.

Comprehensive click-and-pop suppression circuitry reduces noise on power-up/down or into and out of shutdown or mute.

An input op amp allows the user to create a lowpass or highpass filter, and select an optimal gain. The internal precharge circuit ensures clickless/popless turn-on within 10ms.

The MAX9737 is available in the 24-pin, TQFN-EP package and is specified over the -40°C to +85°C temperature range.

2.1 Notebook PCs LCD/PDP/CRT Monitors PC Surround Speakers MP3 Docking Stations

8V to 28V Supply Voltage Range

- Spread-Spectrum Modulation Enables Low-EMI Solution
- Passes EMI Limit with Up to 1m of Speaker Cable
- High 80dB PSRR
- Up to 88% Efficiency Eliminates Heatsink
- Thermal and Output Current Protection
- < 1µA Shutdown Mode</p>
- Click-and-Pop Suppression
- < 10ms Turn-On Time</p>
- Space-Saving, 4mm x 4mm x 0.8mm, 24-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9737ETG+	-40°C to +85°C	24 TQFN-EP*

+Denotes a lead-free/RoHS-compliant package.

*EP = Exposed pad.

Simplified Diagram

Pin Configuration and Typical Application Circuit appear at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Features

ABSOLUTE MAXIMUM RATINGS

PVDD to PGND0.3V to +30V	
AGND to PGND0.3V to +0.3V	
IN, PRE, PC, COM to AGND0.3V to (V _{REG} + 0.3V)	
MUTE, SHDN to AGND0.3V to +6V	
REG to AGND0.3V to (V _S + 0.3V)	
Vs to AGND0.3V to +6V	
OUT+, OUT- to PGND0.3V to (PVDD + 0.3V)	
C1N to PGND0.3V to (PVDD + 0.3V)	
C1P to PGND (PVDD - 0.3V) to (V _{CHOLD} + 0.3V)	
CHOLD to PGND(V _{C1P} - 0.3V) to +36V	
OUT+, OUT-, Short Circuit to PGND or PVDDContinuous	
Thermal Limits (Notes 1, 2)	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
24-Pin TQFN Single-Layer PCB (derate 20.8mW/°C	
above +70°C)1666.7mW	
θJA	
θ _{JC}	

Continuous Power Dissipation 24-Pin TQFN Multiple-Layer PCB	
(derate 27.8mW/°C above +70°C)	2222.2mW
θja	
θJC	3°C/W
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Thermal performance of this device is highly dependent on PCB layout. See the *Applications Information* section for more detail.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{PVDD} = 12V, V_{AGND} = V_{PGND} = 0, V_{\overline{SHDN}} = V_{\overline{MUTE}} = 5V, C1 = 0.1\mu$ F, $C_{IN} = 0.47\mu$ F, $C2 = C_{COM} = C_{REG} = 1\mu$ F, $R_{IN} = R_{FB} = 20k\Omega$, $R_L = \infty$, AC measurement bandwidth 22Hz to 22kHz, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
AMPLIFIER DC CHARACTERIST	ICS					
Speaker-Supply Voltage Range	PVDD	Inferred from PSRR test	8		28	V
Undervoltage Lockout	UVLO			6.8		V
Ouissesst Supply Current		$T_A = +25^{\circ}C$		15	20	
Quiescent Supply Current	IPVDD		2	25	mA	
Shutdown Supply Current	ISHDN	$V_{\overline{SHDN}} = 0, T_A = +25^{\circ}C$		1	10	μΑ
REG Voltage	VREG		4.0	4.2	4.5	V
Preregulator Voltage	Vs			4.85		V
COM Voltage	VCOM		1.94	2.06	2.16	V
INPUT AMPLIFIER CHARACTER	ISTICS					
Capacitive Drive	CL	No sustained oscillation		30		pF
Output Swing		Sinking ±1mA (Note 4)		2.05		V
Open-Loop Gain	Avo			88		dB
Input Offset Voltage	VOS	IN to COM		±2		mV
Input Amplifier Slew Rate				2.5		V/µs
Input Amplifier Unity-Gain Bandwidth				3.5		MHz

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{PVDD} = 12V, V_{AGND} = V_{PGND} = 0, V_{SHDN} = V_{MUTE} = 5V, C1 = 0.1\mu$ F, $C_{IN} = 0.47\mu$ F, $C2 = C_{COM} = C_{REG} = 1\mu$ F, $R_{IN} = R_{FB} = 20$ k Ω , $R_L = \infty$, AC measurement bandwidth 22Hz to 22kHz, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 3)

PARAMETER	SYMBOL	COND	MIN	ТҮР	МАХ	UNITS	
OUTPUT AMPLIFIER CHARACT	ERISTICS						<u>.</u>
Output Amplifier Gain	Av	Preamplifier gain = 0dB (Note 7)		13.1	13.6	14.1	dB
Output Current Limit				3	4.6		А
Output Offset	Vos	OUT+ to OUT-, $T_A = -$	OUT+ to OUT-, $T_A = +25^{\circ}C$			±10	mV
Deuver Querely Deisetien Detie	PSRR	V _{PVDD} = 8V to 28V, T	65	80		dB	
Power-Supply Rejection Ratio	PORR	f = 1kHz, 100mV _{P-P} ri	ipple		88		uв
Output Power	Dour	THD+N = 10%, RL =	6	7.4		w	
Output Power	Pout	THD+N = 10%, $R_L = 10$	4 Ω (Note 6)		13		vv
THD + Noise	THD+N	$P_{OUT} = 2W, f = 1kHz,$, R _L = 8 Ω (Note 5)		0.06		%
Signal-to-Noise Ratio	SNR	A-weighted, P _{OUT} = 1 f _{IN} = 1kHz	THD+N at 1%,		97		dB
Noise	VN	A-weighted (Note 4)			100		μVrms
Efficiency	η	Pout = 4W			85		%
		Peak voltage, 32	Into shutdown		38		
Click-and-Pop Level	K	samples/second,	Out of shutdown		38	dBV	
	KCP	A-weighted	Into mute		38		
		(Notes 4, 5, 8)	Out of mute		38		
Switching Frequency				270	300	330	kHz
Spread-Spectrum Bandwidth					±4		kHz
Thermal-Shutdown Level					+160		°C
Thermal-Shutdown Hysteresis					30		°C
Turn-On Time	ton	From shutdown to full	operation		9	10	ms
DIGITAL INTERFACE (SHDN, M	UTE)						
Input-Voltage High	VINH			2			V
Input-Voltage Low	VINL					0.8	V
Input-Voltage Hysteresis					50		mV
Input Leakage Current		$T_A = +25^{\circ}C$				±10	μA

Note 3: All devices are 100% production tested at $T_A = +25^{\circ}C$, and all temperature limits are guaranteed by design.

Note 4: Amplifier inputs AC-coupled to GND.

Note 5: 8Ω resistive load in series with 68mH inductive load connected across OUT+ and OUT- outputs.

Note 6: 4Ω resistive load in series with 33µH inductive load connected across OUT+ and OUT- outputs for V_{PVDD} \leq 12V. **Note 7:** Output amplifier gain is defined as:

$$20 \times \log \left(\frac{I(V_{OUT+}) - (V_{OUT-})I}{IV_{PRE}I} \right)$$

Note 8: Mode transition controlled by SHDN and MUTE.

MAX9737

M/IXI/M

4

MAX9737

Typical Operating Characteristics (continued)

 $(V_{PVDD} = 12V, V_{GND} = V_{PGND} = 0, V_{\overline{SHDN}} = V_{\overline{MUTE}} = 5V, R_{IN} = R_{FB} = 20k\Omega$, unless otherwise noted.)

MAX9737

Pin Description

PIN	NAME	FUNCTION
1, 17, 18	PVDD	Power Supply. Bypass PVDD to PGND with a $1\mu F$ capacitor connected to pin 1 and a $1\mu F$ capacitor connected to pins 17 and 18.
2	CHOLD	Charge-Pump Output. Connect a 1µF capacitor to PVDD.
3, 10, 11	AGND	Analog Ground
4	MUTE	Mute Input. Drive MUTE low to place the device in mute mode.
5	SHDN	Shutdown Input. Drive SHDN low to place the part in shutdown mode.
6	PC	Input Capacitor Precharge Connection. Connect between input resistor, R_{IN} , and input coupling capacitor, C_{IN} .
7	IN	Op Amp Inverting Input.
8	PRE	Op Amp Output. PRE is the output of the input operational amplifier.
9	COM	Internal 2.0V Bias. Bypass COM to AGND with a 1µF capacitor.
12	REG	Internal 4.2V Bias. Bypass REG to AGND with a 1µF capacitor.
13, 14	Vs	Internal 5.0V Bias. Bypass Vs to AGND with a 1µF capacitor.
15	C1N	Charge-Pump, Flying-Capacitor Negative Terminal. Connect C1N to C1P through a 0.1µF capacitor.
16	C1P	Charge-Pump, Flying-Capacitor Positive Terminal. Connect C1P to C1N through a 0.1µF capacitor.
19, 20	OUT-	Negative Speaker Output
21, 22	PGND	Power Ground
23, 24	OUT+	Positive Speaker Output
_	EP	Exposed Pad. Must be externally connected to PGND.

Detailed Description

The MAX9737 filterless, mono class D audio power amplifier offers Class AB audio performance and Class D efficiency with minimal board space. The device operates from an 8V to 28V supply range.

The MAX9737 features filterless, spread-spectrum modulation, externally set gain and a low-power shutdown mode that reduces supply current to less than 1 μ A. Comprehensive click-and-pop suppression and precharge circuitry reduce noise into and out of shutdown or mute within 10ms.

Spread-Spectrum Modulation

The MAX9737 features a unique spread-spectrum switching modulation that flattens EMI wideband spectral components, reducing radiated emissions from the speaker and cables. The switching frequency of the Class D amplifier varies randomly by ±4kHz around the 300kHz center frequency. Instead of a large amount of spectral energy present at multiples of the switching frequency, the energy is spread over a bandwidth that increases with frequency. Above a few MHz, the wideband spectrum looks like white noise for EMI purposes.

A proprietary amplifier topology ensures this white noise does not corrupt the noise floor in the audio bandwidth.

Efficiency

The high efficiency of a Class D amplifier is due to the output transistors acting as switches and therefore consume negligible power. Power loss associated with the Class D output stage is due to the MOSFET I²R losses, switching losses, and quiescent current.

Although the theoretical best efficiency of a linear amplifier is 78% at peak output power, under typical music reproduction levels, the efficiency falls to below 40%. The MAX9737 exhibits > 80% efficiency under the same conditions (Figure 1).

Shutdown

The MAX9737 features a shutdown mode that reduces power consumption to less than 1µA (typ), extending battery life in portable applications. Drive SHDN low to place the device in low-power shutdown mode. In shutdown mode, the outputs are high impedance and the common-mode voltage at the output decays to zero.

Mute Function

The MAX9737 features a mute mode where the signal is attenuated at the speaker and the outputs stop switching. To mute the MAX9737, drive MUTE low.

Click-and-Pop Suppression

The MAX9737 features comprehensive click-and-pop suppression and precharge circuitry that reduce audible transients on startup and shutdown. The precharge circuit enables the amplifier within 10ms without any clicks or pops. Connect PC between the input resistor (R_{IN}) and the input capacitor (C_{IN}). For optimal click-and-pop suppression, use a 0.47 μ F input coupling capacitor (C_{IN}).

Current Limit

When output current exceeds the current limit, 4.6A (typ), the MAX9737 disables the outputs and initiates a 450µs startup sequence. The shutdown and startup sequence is repeated until the output fault is removed. Properly designed applications do not enter current-limit mode unless the output is short circuited or connected incorrectly.

Thermal Shutdown

When the die temperature exceeds the thermal-shutdown threshold, +160°C (typ), the MAX9737 outputs are disabled. When the die temperature decreases by 30°C, normal operation resumes. Some causes of thermal shutdown are excessively low load impedance, poor thermal contact between the MAX9737's exposed pad and the PCB, elevated ambient temperature, or poor PCB layout and assembly.

_Applications Information

Filterless Class D Operation

The MAX9737 meets EN55022B EMC radiation limits with an inexpensive ferrite bead and capacitor filter when the speaker leads are less than or equal to 1m (Figure 3). Select a ferrite bead with 100Ω to 600Ω impedance, and rated for 2A. The capacitor value varies based on the ferrite bead chosen and the speaker lead length. See Figure 2 for the correct connections of these components.

Figure 1. MAX9737 Efficiency vs. Class AB Efficiency

Figure 2. Ferrite Bead Filter Configuration

Figure 3. MAX9737 EMI Performance with 1m Twisted-Pair Speaker Cable

Table 1. Suggested	Values for LC Filter
--------------------	----------------------

R L (Ω)	L1, L2 (µH)	C1 (µF)	C2, C3 (µF)	C4, C5 (μF)	R1, R2 (Ω)
4	10	0.47	0.10	0.22	10
8	15	0.15	0.15	0.15	15

When evaluating the MAX9737 with a ferrite bead filter and resistive load, include a series inductor (68µH for 8Ω load and 33µH for 4Ω load) to model typical loudspeaker's behavior. Omitting the series inductor reduces the efficiency, the THD+N performance and the output power of the MAX9737. When evaluating with a loudspeaker, no series inductor is required.

Inductor-Based Output Filters

Some applications use the MAX9737 with a full inductor/capacitor-based (LC) output filter. See Figure 4 for the correct connections of these components.

The load impedance of the speaker determines the filter component selection (see Table 1).

Inductors L1 and L2 and capacitor C1 form the primary output filter. Capacitors C2 and C3 provide commonmode filtering to reduce radiated emissions. Capacitors C4 and C5, plus resistors R1 and R2, form a Zobel at the output. A Zobel corrects the output loading to compensate for the rising impedance of the loudspeaker. Without a Zobel, the filter exhibits peaking near the cutoff frequency.

Component Selection

Gain-Setting Resistors

The output stage provides a fixed internal gain in addition to the externally set input stage gain. The fixed-output stage gain is set at 13.6dB (4.8V/V). Set overall gain by using resistors R_F and R_{IN} (Figure 5) as follows:

$$A_V = -4.8 \left(\frac{R_F}{R_{IN}}\right) V/V$$

where A_V is the desired voltage gain. Choose R_F between $10k\Omega$ and $50k\Omega.$

The PRE terminal is an operational amplifier output, allowing the MAX9737 to be configured as a filter or an equalizer.

Input Capacitor

An input capacitor, C_{IN} , in conjunction with the input resistor, R_{IN} , of the MAX9737 forms a highpass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming negligible source impedance, the -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN}C_{IN}}$$

Figure 4. LC Filter Configuration

Figure 5. Preamplifier Gain Configuration

Choose C_{IN} such that f_{-3dB} is well below the lowest frequency of interest. To reduce low-frequency distortion, use capacitors whose dielectrics have low-voltage coefficients. Capacitors with high-voltage coefficients cause increased distortion close to f_{-3dB} . For best click-and-pop suppression, use a 0.47μ F input capacitor.

COM Capacitor

COM is the output of the internally generated DC bias voltage. Bypass COM with a 1μ F capacitor to AGND.

Regulator Capacitor

REG is the output of the internally generated DC bias voltage. Bypass REG with a 1µF capacitor to AGND.

Power Supplies

The MAX9737 features separate supplies for signal and power portions of the device, allowing for the optimum combination of headroom, power dissipation and noise immunity. The speaker amplifiers are powered from PVDD and can range from 8V to 28V. The remainder of the device is powered by an internal 5V regulator, Vs.

Internal Regulator

The MAX9737 features an internal 5V regulator, Vs, powered from PVDD. Bypass Vs with a 1 μ F capacitor to AGND.

Supply Bypassing, Layout, and Grounding Proper layout and grounding are essential for optimum performance. Use wide traces for the power-supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance. Proper grounding improves audio performance, minimizes crosstalk between channels, and prevents switching noise from coupling into the audio signal. Connect PGND and AGND together at a single point on the PCB. Route all traces that carry switching transients away from AGND and the traces/components in the audio signal path.

Bypass PVDD with two 1 μ F capacitors to PGND. Place the bypass capacitors as close as possible to the MAX9737. Place a 100 μ F capacitor between PVDD and PGND. Bypass Vs, V_{COM}, and V_{REG} with a 1 μ F capacitor to AGND.

Use wide, low-resistance output traces. Current drawn from the outputs increases as load impedance decreases. High-output trace resistance decreases the power delivered to the load. The MAX9737 TQFN package features an exposed thermal pad on its underside. This pad lowers the package's thermal resistance by providing a heat conduction path from the die to the PCB. Connect the exposed thermal pad to PGND by using a large pad and multiple vias to the PGND plane.

Pin Configuration

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
24 TQFN-EP	T2444+4	<u>21-0139</u>

MAX9737

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

12L 4×4 MIN NDM. MAX. 0.75 0.80 0.02 0.0 0.02 0.35 3.90 4.00 4.10 3.90 4.00 4.10 0.825 - - 0.455 0.55 0.65 12 - - 3 - - 3 - - 3 - - - - - - - - 0.455 0.55 0.65 12 - - 3 - - - - - 0.455 0.55 0.65 12 - - - - - - - - 0.55 0.55 0.65 - - - - - - - - -	0.70 0.75 0.80 0.0 0.02 0.05 0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 0.65 BSC. 0.25 − − 0.45 0.55 0.65 16 4 4 4 VGGC	0.70 0.75 0.0 0.02 0.20 REF 0.20 0.25 3.90 4.00 3.90 4.00 0.50 BSC. 0.25 -	MAX. N 0.80 (0.05 (0.30 0 4.10 3 4.10 3	MIN. NE 0.70 0.7 0.0 0.1 0.20 0.20 0.18 0.2 0.18 0.2 3.90 4.1 0.50 0.25 0.25 0.30 0.30 0.2	02 0.05	MIN. N 0.70 0 0.0 0 0.15 0 3.90 4 3.90 4 0.41 0.25	0.75 0 0.02 0 0 REF 0.20 0 4.00 4 4.00 4 0 BSC. -	MAX. C 0.80 T 0.05 T 0.25 T 4.10 T - T 0.50 T	KG. 10DES 1244-3 1644-3 1644-4 2044-2 2044-2 2044-3 2444-2 2444-3 2444-4	MIN. 1.95 1.95 1.95 1.95 1.95 1.95 1.95 2.45 2.45	2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.60	MAX. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.	MIN. 1.95 1.95 1.95 1.95 1.95 1.95 1.95	E2 NDM. 2.10 2.10 2.10 2.10 2.10 2.10	2.25 2.25 2.25 2.25 2.25 2.25 2.25
0.70 0.75 0.80 0.0 0.02 0.05 0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 0.80 BSC 0.25 0.45 0.55 0.65 12 3 √GGB ENSIUNING & TE	0.70 0.75 0.80 0.0 0.02 0.05 0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 0.65 BSC. 0.25 − − 0.45 0.55 0.65 16 4 4 4 VGGC	0.70 0.75 0.0 0.02 0.20 REF 0.20 0.25 3.90 4.00 0.50 RSC 0.25 - 0.45 0.55 20 5 5	0.80 (0.05 (0.30 (4.10 3 4.10 3 . (0.30 (4.10 3) . (0.30 (0.30) (0.30 (0.30)))))))))))))))))))))))))))))))))))	0.70 0.7 0.0 0.0 0.20 0.18 0.2 3.90 4.1 0.50 0.25 0.25 0.30 0.25	75 0.80 02 0.05 REF 23 23 0.30 00 4.10 00 4.10 BSC. - - - 40 0.50 24	0.70 0 0.0 0 0.15 0 3.90 4 3.90 4 0.41 0.25	0.75 0 0.02 0 0 REF 0.20 0 4.00 4 4.00 4 0 BSC. - 0.40 0	MAX. C 0.80 T 0.05 T 0.25 T 4.10 T - T 0.50 T	1244-3 1244-4 1644-3 1644-4 1644-2 2044-2 2044-3 2444-2 2444-2 2444-2	1.95 1.95 1.95 1.95 1.95 1.95 1.95 2.45	2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.60	2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	2.10 2.10 2.10 2.10 2.10 2.10 2.10	2.25 2.25 2.25 2.25 2.25 2.25 2.25
0.0 0.02 0.05 0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 0.80 BSC 0.25 0.45 0.55 0.65 12 3 VGGB ENSIDNING & TE	0.0 0.02 0.05 0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 0.65 BSC. 0.25 − − 0.45 0.55 0.65 16 4 4 VGGC	0.0 0.02 0.20 REF 0.20 0.25 3.90 4.00 0.50 BSC 0.25 − 0.45 0.55 − 0.45 0.55 20 5	0.05 0.30 4.10 3 4.10 3 - 0	0.0 0.1 0.20 0.18 0.2 3.90 4.1 3.90 4.1 0.50 0.25 0. 0.30 0. 2 0.30 0.	02 0.05 REF 23 0.30 00 4.10 00 4.10 BSC. 40 0.50 24	0.0 0 0.15 0 3.90 4 3.90 4 0.25	0.02 0 0 REF 0.20 0 4.00 4 4.00 4 4.00 4 0 BSC. - 0.40 0	0.05 T 0.25 T 4.10 T 4.10 T - T 0.50 T	1244-4 1644-3 1644-4 2044-2 2044-3 2444-2 2444-2 2444-3	1.95 1.95 1.95 1.95 1.95 1.95 2.45	2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.60	2.25 2.25 2.25 2.25 2.25 2.25 2.25	1.95 1.95 1.95 1.95 1.95 1.95	2.10 2.10 2.10 2.10 2.10 2.10	2.25 2.25 2.25 2.25 2.25 2.25
0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 3.90 4.00 4.10 0.80 BSC. 0.25 0.45 0.35 0.65 12 3 3 VGGB ENSIGNING & TE	0.20 REF 0.25 0.30 0.35 3.90 4.00 4.10 3.90 4.00 4.10 0.65 BSC. 0.25 0.45 0.55 0.65 16 4 4 √GGC	0.20 REF 0.20 0.25 3.90 4.00 3.90 4.00 0.50 BSC 0.25 - 0.45 0.55 20 5 5	0.30 0 4.10 3 4.10 3	0.20 0.18 0.2 3.90 4.1 0.50 0.50 0.25 0.30 0. 2	REF 23 0.30 00 4.10 00 4.10 BSC. 40 0.50 24	0.15 0 3.90 4 3.90 4 0.41 0.25	0 REF 0.20 0 4.00 4 4.00 4 0 BSC. - 0.40 0	1 1 0.25 1 4.10 1 4.10 1 - 1 - 1 0.50 1	1644-3 1644-4 2044-2 2044-3 2444-2 2444-2 2444-3	1.95 1.95 1.95 1.95 1.95 2.45	2.10 2.10 2.10 2.10 2.10 2.60	2.25 2.25 2.25 2.25 2.25 2.25	1.95 1.95 1.95 1.95 1.95	2.10 2.10 2.10 2.10	2,25 2,25 2,25 2,25 2,25
0.25 0.30 0.35 3.90 4.00 4.10 3.90 4.00 4.10 0.80 BSC. 0.25 0.45 0.55 0.65 12 3 3 VGGB ENSIGNING & TE	0.25 0.30 0.35 3.90 4.00 4.10 3.90 4.00 4.10 0.65 BSC 0.65 BSC 0.45 0.55 0.65 - 16 - 4 - 4 - 4 - 4 - 4	0.20 0.25 3.90 4.00 3.90 4.00 0.50 BSC 0.25 - 0.45 0.55 20 5	0.30 0 4.10 3 4.10 3	0.18 0.2 3.90 4.1 3.90 4.1 0.50 0.25 0.30 0. 22	23 0.30 00 4.10 00 4.10 BSC. 40 0.50	0.15 0 3.90 4 3.90 4 0.44 0.25	0.20 0 4.00 4 4.00 4 0 BSC. - 0.40 0	0.25 T 4.10 T 4.10 T . T 0.50 T	1644-4 2044-2 2044-3 2444-2 2444-2	1.95 1.95 1.95 1.95 2.45	2.10 2.10 2.10 2.10 2.60	2.25 2.25 2.25 2.25 2.25	1.95 1.95 1.95 1.95	2.10 2.10 2.10	2.25 2.25 2.25
3.90 4.00 4.10 3.90 4.00 4.10 0.80 BSC. 0.45 0.55 0.65 12 3 VGGB ENSIGNING & TE	3.90 4.00 4.10 3.90 4.00 4.10 0.65 BSC. 0.25 0.45 0.55 0.65 16 4 4 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	3.90 4.00 3.90 4.00 0.50 BSC 0.25 − 0.45 0.55 20 5 5	4.10 3 4.10 3	3.90 4. 3.90 4. 0.50 0.25 0. 0.30 0.	00 4.10 00 4.10 BSC. 40 0.50 24	3.90 4 3.90 4 0.41 0.25	4.00 4 4.00 4 0 BSC. - 0.40 0	4.10 T 4.10 T - T 0.50 T	2044-2 2044-3 2444-2 2444-3	1.95 1.95 1.95 2.45	2.10 2.10 2.10 2.60	2.25 2.25 2.25	1.95 1.95 1.95	2.10 2.10	2.25 2.25
3.90 4.00 4.10 0.80 BSC. 0.25 0.45 0.55 0.65 12 3 WGGB ENSIONING & TE	3.90 4.00 4.10 0.65 BSC. 0.25 0.45 0.55 0.65 16 4 4 VGGC	3.90 4.00 0.50 BSC. 0.25 - 0.45 0.55 20 5 5	4.10 3	3.90 4. 0.50 0.25 0.30 0. 2	00 4.10 BSC. 40 0.50	3.90 4 0.41 0.25	4.00 4 0 BSC. - 0.40 0	4.10 T - T 0.50 T	2044-3 2444-2 2444-3	1.95 1.95 2.45	2.10 2.10 2.60	2.25 2.25	1.95 1.95	2.10	2.25
0.80 BSC. 0.25 0.45 0.55 0.65 12 3 VGGB ENSIGNING & TE	0.65 BSC. 0.25 0.45 0.55 0.65 16 4 VGGC	0.50 BSC. 0.25 - 0.45 0.55 20 5 5	- 0	0.50 0.25 0.30 0. 2	BSC. 40 0.50 24	0.4	0 BSC. - 0.40 0	- T 0.50 T	2444-2 2444-3	1.95 2.45	2.10 2.60	2.25	1.95		
0.25 0.45 0.55 0.65 12 3 VGGB ENSIONING & TE	0.25 0.45 0.55 0.65 16 4 VGGC	0.25 - 0.45 0.55 20 5 5	- 0	0.25 0.30 0. 2	 40 0.50 24	0.25	- 0.40 0	- т 0.50 т	2444-3	2.45	2.60			2.10	
0.45 0.55 0.65 12 3 3 VGGB ENSIONING & TE	0.45 0.55 0.65 16 4 VGGC	0.45 0.55 20 5 5		0.30 0. 2	40 0.50 24		0.40 0	0.50 T				2.63			2.25
12 3 3 VGGB ENSIONING & TO	16 4 4 WGGC	20 5 5	0.65 0	2000 0. 2	24	0.30 0		<u> </u>	2444-4	2451			2.45	2.60	2.63
3 3 VGGB ENSIONING & TO	4 4 WGGC	5					28				2.60	2.63	2.45	2.60	2.63
3 WGGB ENSIONING & TO	4 WGGC	5			6		-		2444N-4	2.45		2.63	2.45	2.60	2.63
WGGB	WGGC			(7		2444M-1	2.45		2.63	2.45	2.60	2.63
Ensioning & To	1	WGGD-1			6 GD-2		7 GGE	Ľ	2844-1	2.50	2.60	2.70	2.50	2.60	2.70
BE EITHER A ENSIGN & APPL: AND NE REFER OPULATION IS I LANARITY APPL WING CONFORMS KING IS FOR PA LANARITY SHAL	POSSIBLE IN A S IES TO THE EXP S TO JEDEC MO2 ACKAGE DRIENTA L NOT EXCEED (D FEATURE. ZED TERMINAI OF TERMINA SYMMETRICAL 20SED HEAT 20, EXCEPT I TION REFERE 0.08mm.	L AND Fash: Sink S For Ta) IS ME N EACH IION. SLUG A 2444-3	ASURED D AND	BETVE E SIDE AS TH	EN 0.2 RESP	25mm AND 0.: PECTIVELY. RMINALS.					411F1E1	x	
D CENTERLINES	SHOWN ARE FOR	E POSITION A	ONLY.	<i>'</i> .					1111E: PACK 12,16	AGE [,20,24		INE			
	ULATION IS NARITY APPL NG CONFORMS NG IS FOR P NARITY SHAL GE SHALL N CENTERLINES R OF LEADS	ULATION IS POSSIBLE IN A 3 NARITY APPLIES TO THE EXF NG CONFORMS TO JEDEC MO2 VG IS FOR PACKAGE ORIENTA NARITY SHALL NOT EXCEED 0.00m GE SHALL NOT EXCEED 0.00m CENTERLINES TO BE AT TRU R OF LEADS SHOWN ARE FOR	ULATION IS POSSIBLE IN A SYMMETRICAL NARITY APPLIES TO THE EXPOSED HEAT NG CONFORMS TO JEDEC MD220, EXCEPT VG IS FOR PACKAGE ORIENTATION REFERE NARITY SHALL NOT EXCEED 0.08mm. GE SHALL NOT EXCEED 0.10mm. CENTERLINES TO BE AT TRUE POSITION (R OF LEADS SHOWN ARE FOR REFERENCE	ULATION IS POSSIBLE IN A SYMMETRICAL FASH NARITY APPLIES TO THE EXPOSED HEAT SINK NG CONFORMS TO JEDEC MO220, EXCEPT FOR T VG IS FOR PACKAGE ORIENTATION REFERENCE I NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.10mm. CENTERLINES TO BE AT TRUE POSITION AS DE R OF LEADS SHOWN ARE FOR REFERENCE ONLY	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG A NG CONFORMS TO JEDEC MO220, EXCEPT FOR T2444- VG IS FOR PACKAGE ORIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.00mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED R OF LEADS SHOWN ARE FOR REFERENCE ONLY.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL NG CONFORMS TO JEDEC MD220, EXCEPT FOR T2444-3, T2444 VG IS FOR PACKAGE ORIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.10mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASI R OF LEADS SHOWN ARE FOR REFERENCE ONLY.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS TH NG CONFORMS TO JEDEC MD220, EXCEPT FOR T2444-3, T2444-4 AN VG IS FOR PACKAGE ORIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.10mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIME R OF LEADS SHOWN ARE FOR REFERENCE ONLY.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TEN NG CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2E VG IS FOR PACKAGE ORIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.10mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION R OF LEADS SHOWN ARE FOR REFERENCE ONLY.	NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. NG IS FOR PACKAGE DRIENTATION REFERENCE DNLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.10mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC M0220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. VG IS FOR PACKAGE ORIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.00mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05. R OF LEADS SHOWN ARE FOR REFERENCE ONLY. IMENSIONS ARE THE SAME FOR LEADED (-) & PbFREE (+) PACKAGE CODES.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. VI IS FOR PACKAGE DENENTATION REFERENCE DNLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.00mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05. R OF LEADS SHOWN ARE FOR REFERENCE DNLY. IMENSIONS ARE THE SAME FOR LEADED (-) & PWFREE (+) PACKAGE CODES.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. NG IS FOR PACKAGE DRIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.00mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05. R OF LEADS SHOWN ARE FOR REFERENCE ONLY. IMENSIONS ARE THE SAME FOR LEADED (-) & POFREE (+) PACKAGE CODES.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. VG IS FOR PACKAGE DELENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.00mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05. R OF LEADS SHOWN ARE FOR REFERENCE ONLY. IMENSIONS ARE THE SAME FOR LEADED (-) & PWFREE (+) PACKAGE CODES. THEE PACKAGE DUTLINE	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC MD220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. VG IS FOR PACKAGE DERENTATION REFERENCE DNLY. NARITY SHALL NOT EXCEED 0.08mm. GE SHALL NOT EXCEED 0.08mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05. R OF LEADS SHOWN ARE FOR REFERENCE DNLY. IMENSIONS ARE THE SAME FOR LEADED (-) & PWFREE (+) PACKAGE CODES.	ULATION IS POSSIBLE IN A SYMMETRICAL FASHION. NARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. NG CONFORMS TO JEDEC M0220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1. VG IS FOR PACKAGE DRIENTATION REFERENCE ONLY. NARITY SHALL NOT EXCEED 0.00mm. GE SHALL NOT EXCEED 0.00mm. CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05. R OF LEADS SHOWN ARE FOR REFERENCE ONLY. IMENSIONS ARE THE SAME FOR LEADED (-) & PbFREE (+) PACKAGE CODES.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

_____13