MICROCHIP ATmega32A
megaAVR® Data Sheet

Introduction

The ATmega32A is a low power, CMOS 8-bit microcontrollers based on the AVR® enhanced RISC archi-
tecture. The ATmega32A is a 40/44-pins device with 32 KB Flash, 2 KB SRAM and 1 KB EEPROM. By exe-
cuting instructions in a single clock cycle, the devices achieve CPU throughput approaching one million
instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consump-
tion versus processing speed.

Features

» High-performance, Low-power AVR® 8-bit Microcontroller
» Advanced RISC Architecture
— 131 Powerful Instructions — Most Single-clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16MIPS Throughput at 16MHz
— On-chip 2-cycle Multiplier
» High Endurance Non-volatile Memory segments
— 32Kbytes of In-System Self-programmable Flash program memory
— 1024Bytes EEPROM
— 2Kbytes Internal SRAM
— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
— Data retention: 20 years at 85°C/100 years at 25°C(")
— Optional Boot Code Section with Independent Lock Bits
* In-System Programming by On-chip Boot Program
* True Read-While-Write Operation
— Programming Lock for Software Security
» JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
« QTouch® Library Support
— Capacitive touch buttons, sliders and wheels
— QTouch and QMatrix " acquisition

— Up to 64 sense channels

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 1

ATmega32A

» Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
— Real Time Counter with Separate Oscillator
— Four PWM Channels
— 8-channel, 10-bit ADC
* 8 Single-ended Channels
« 7 Differential Channels in TQFP Package Only
« 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
— Byte-oriented Two-wire Serial Interface
— Programmable Serial USART
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
 Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources

— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby

I/0 and Packages
— 32 Programmable 1/O Lines
— 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
» Operating Voltages
- 2.7V -55V
» Speed Grades
- 0-16MHz
» Power Consumption at 1MHz, 3V, 25°C
— Active: 0.6mA
— Idle Mode: 0.2mA

— Power-down Mode: < 1pA

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 2

ATmega32A

Table of Contents

Y o 10 W 0T o1 o [7] =1 1 Lo) F S 10
A 0 17 oV - N 11
2.1 (2 ToTed 1ql I T=To =1 o o KU TR PRRRR 11
2.2 Pin DESCIIPONS ... ———— 12
3 RESOUFICESeeeiiieeeeeeeeiessscsssssssss s s aa s s s s s s s snsn s s s s s s s s ssssnnnnnnn 13
T D F- 1 2= 8 (=1 (=T 1 11 L o 13
5 About Code EXamPIEscomimiieeeeeeeeccceee s s e e s en e n e 14
6 Capacitive toUCH SENSINGccoevueeeeemmiieeeeeeeeeeccsssssssssssssssssssssssnnnnnnes 14
7 AVR CPU COFEoeeeeeeeeteecesiesss s e s sas s e s s s s s ss s s s s n s nnnnnnnmmmmssnns 15
7.1 OVEIVIBW ...ttt ettt e e sttt e e et e e s e e s bae e e e e nnbeeeesensteeaeeenneeas 15
7.2 ALU — Arithmetic LOgIiC UNit..........eoiiiiiiiiiiiiee e 16
7.3 StAtUS REGISIEN ...eiiiiiieiee e 16
7.4 General Purpose Register Filecccuuiiiiiiiiiiiiieie e 17
7.5 StACK POINTET ... e e 19
7.6 Instruction Execution TimiNgccccooiiiiii i 20
7.7 Reset and Interrupt Handling.........cooooi oo 21
8 AVR MEMOLIES ...t eeeee s sss s s s s s e s s s n e m s s 23
8.1 OVEIVIBW ...ttt s et e e et e e e e st e e e s e et e e e e e nnbeeeeeenseeeeeeenneeas 23
8.2 In-System Reprogrammable Flash Program Memoryccccccceiiiiiinnninee. 23
8.3 SRAM Data MEMOTYcoiiuiiiiieeiiiiee st e e ettt e e e et ee e e s e e e searae e e e s nnneeees 24
8.4 EEPROM Data MEMOIYc.oooiiiiieieeeeee ettt 25
8.5 /O IMIBIMOIY ...t e e e e e e e e e e e b e e e eeaaaaeas 26
8.6 Register DeSCHPLONoooiiiiii e 27
9 System Clock and CIOCK OPLiONSeeeeeeeeeememmiiiiisssiisisssssissssssssnnnnnnns 31
9.1 Clock Systems and their Distribution............cccccoiiiiii e, 31
9.2 ClOCK SOUICES ...ttt e e e e e e e eeas 32
9.3 Default CIOCK SOUMCEuiiiieiiiiiiee ettt et et e e e e nraeeeeeenns 32
9.4 Crystal OSCIllatoruuviiiiiiiiee e 32
9.5 Low-frequency Crystal OSCillator.............coocuiiiiiiiiiiiee e 34
9.6 External RC OSCIllatorooiuiiiiiiiiiiie et 34
9.7 Calibrated Internal RC OSCIllator.............ooiiiiiiiiieiiee e 35
9.8 EXEErNal ClIOCK 36

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 3

ATmega32A

9.9 Timer/Counter OSCIllAtor...........ooiiiii e 37
9.10 Register DesCriplionueeiiiiiiiieie e 38
10 Power Management and Sleep Modesoommmeemmmeemniieeccciiiiiiineennnns 39
10.1 SIEEP MOAES... ... 39
(0T o L= 1 o T [P 39
10.3 ADC Noise Reduction MOGE...........oeeiiiiiiiiiiiiiiic e 40
10.4 PoWer-doWn MOGE.........coiuiiiiiiiiiiiie ettt 40
10.5 POWEr-Save MOE........ooiiiiiiiiiiiie e 40
10.6 StANADY MOGE ...ooiiiiiiiiee e 40
10.7 Extended Standby MOAEcc.uuuiiiiiiiiiiiieeeceee e 41
10.8 Minimizing Power CoNSUMPLIONcoiiiiiiiiiiiiiieeeee e 41
10.9 Register DeSCPLONcooiiiiiiee e 43
11 System Control and ReSetcoovveovcvcviiieeeeeeteeneneee s sssssss s 44
11.1 Resetting the AVR ... 44
11,2 RESEESOUMCES ...ttt 44
11.3 Internal Voltage Reference...........oocoueeiiiiiiiiiii e 47
11.4 WatChdOog TIMEr ... 48
115 Register DeSCHPLONcoiiiiieieii e 49
L2 111 =T g 7] o £ 51
12.1 Interrupt Vectors in ATmMegaB2A ... 51
12.2 Register DESCHPLONcoiiiiiiieeei e 54
LR T O N oo o 56
P31 OVBIVIEW. ..ttt rh et st e e e ebe e e be e e s sabe e e nneeas 56
13.2 Ports as General Digital /Ooiiiiiiiiiiie e 57
13.3 Alternate Port FUNCHONSo.ooiiiiiiii e 61
13.4 Register DeSCPLONcooiiiiiii e 70
14 External INterrupts ... meeeeeeiieee e ee e e e s e ns s s e e 73
14.1 Register DeSCIPLONoooi i 73
15 8-bit Timer/Counter0 wWith PWM ...t 76
151 FRAIUIES ... 76
T5.2 OVBIVIEBW. ..ttt ra et ettt e e e ebt e e e be e e s sabeeenneeas 76
15.3 Timer/Counter CIOCK SOUIMCEScoeiuiiiiiiiiiiiee et 77
15.4 CoUNEr UNIt .oeeeeiiieiee et 77
15.5 Output Compare UNit............ooooiiiiiiiiiiiiiieeee e 78
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 4

ATmega32A

15.6 Compare Match Output Unit............ooeviiiiiiiiiiiiiiieeeeeee e 79
15.7 Modes Of OPErationcooiiiiiiiiiiiiieee e 80
15.8 Timer/Counter Timing Diagramsccccuiiieiiiiiiiee e e e e eeeeeee s 84
15.9 Register DESCPLONcoiiiiiiiiei e 86
16 Timer/Counter0 and Timer/Counter1 Prescalerscccoccuuvevvrsuunes 90
TB.T OVBIVIEW. ..ttt ra ettt e st e e e rbe e e e be e e s snbeeenneeas 90
16.2 Internal ClOCK SOUICEeiiiiiiiiiiie ettt 90
16.3 Prescaler RESEL......ccuuiiiiiiii e 90
16.4 EXternal ClOCK SOUICEcocuuiiiiiiiiiiiii ettt 90
16.5 Register DeSCHPLONooiiiiiii e 92
17 16-bit Timer/COoOUNLErT ...ttt 93
171 FRAIUIES ... 93
T7.2 OVEIVIEBW. ..ttt ettt a et et e e st e e e bt e e e be e e s snbeeennneas 93
17.3 Accessing 16-bit Registers ... 95
17.4 Timer/Counter CIOCK SOUIMCEScceiuiiiiiiiiiiiee ettt 98
T7.5 CoUNEr UNIt ..ot 98
17.6 Input Capture Unit ... e 99
17.7 Compare Match Output Unit............oeeeiiiiiiiiiiiieeeeeeeeeeeeee 103
17.8 Modes Of OPErationccooiiiiiiiiiiiieeeeeee e 104
17.9 Timer/Counter Timing Diagramscooccuiiieiiiiiiiee e 111
17.10 Register DeSCrPLONcooiiiiiiii e 112
18 8-bit Timer/Counter2 with PWM and Asynchronous Operation 119
18.1 FRAIUIES ... s 119
T8.2 OVBIVIEW. ..ttt ettt ettt ab e e rab e e sbe e e sbae e e anbee e e 119
18.3 Timer/Counter CIOCK SOUICESccoiuiiiiiiiieiiee e 120
18.4 CoUNEr UNIt ... e 120
18.5 Output Compare Unit............ooooiiiiiiiiiieeee e 121
18.6 Compare Match Output Unit............oveiviiiiiiiiiiiieeee e 123
18.7 Modes Of OPErationcooiiiiiiiiiiiiieeeeee e 123
18.8 Timer/Counter Timing Diagramscccccuuiieeiiiiiire e 127
18.9 Asynchronous Operation of the Timer/Counter............ccccoeviieeeiiciiee e, 129
18.10 Timer/Counter PreSCalercocuiiiiiiiiiiiiieee e 131
18.11 Register DeSCrPONoooiiiiiiii e 131
19 SPI - Serial Peripheral Interfaceooommmmeeeemeeeccccccesnennennens 136
191 FRAIUIES ... 136

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 5

ATmega32A

1.2 OVEIVIEBW. ..ttt ettt s b e e eab e e rab e e e sabe e e sbeeeeanbee e e 136
19.3 SS PiN FUNCHONANLY ..., 140
194 Data MOUES ... 142
. U - Y o 144
20.1 FRAIUIES ... s 144
20.2 OVEIVIBW...eiiitii ettt ettt ettt ettt et e ettt e s b et e e e e e enbe e e nnns 144
20.3 ClOCK GENEIAtIONeeiiitii ettt ettt 146
204 Frame FOrmMatsoooiiiiiiiiie e 148
20.5 USART INitialiZation..........cooeeiiieiie e 149
20.6 Data Transmission — The USART Transmitter..........ccccoooiiniiiiniieniiieennnen, 150
20.7 Data Reception — The USART RECEIVETccuvumiiiiiiiiieeeeeeeeeceeeeee e, 153
20.8 Asynchronous Data RecCeption ...t 157
20.9 Multi-processor Communication Modeccccuvviiieiiiiiiiiiiiieeeeeee e, 160
20.10 Accessing UBRRH/UCSRC REGIStErSuvvvviiiiiiiiieiiiiiiiee e 161
20.11 Register DesCriptioncooiiiiiiiiiieie e 163
20.12 Examples of Baud Rate Setting..........cccccviiiiiiiii i 167
21 Two-wire Serial INterfaceccoovoueemmmmemmmmmmmeiiiiiiiiiicsicccccccccsssssnennenns 172
211 FRAIUIES ... s 172
21.2 Two-wire Serial Interface Bus Definition...........cccceeiieiiiii i, 172
21.3 Data Transfer and Frame Format...........ccccooiiiiiiiiiiii e, 173
21.4 Multi-master Bus Systems, Arbitration and Synchronization......................... 175
21,5 Overview of the TWI MOdUIEcccciiiiiiiiiiiiee e 177
216 USING the TWI...ooiie et s 179
21.7 TransSmiSSION MOEScooiiiiiiiiiiiiiii et 181
21.8 Multi-master Systems and Arbitration............cccooeiiiie i 192
21.9 Register DeSCriptionoooiiiiiiieeee e 195
22 Analog COMPAratorc..ccccccevvrssssssmmmmmennnensnssssssssssssssssssssssssssssssssnnns 198
b B © - V1= PSR 198
22.2 Analog Comparator Multiplexed INpuUtccccoeiiiiiiiie i, 198
22.3 Register DeSCriptioncoooiiiiiie e 199
23 Analog to Digital CONVErterccoeeoeeemmeemeemmmniiiiiiisissssssssssssssssssnnnnns 201
23.1 FRAIUIES ... 201
232 OVEIVIBW ..ttt ettt ettt eb ettt e e it e e st e e e s b et e e e s nbe e nnns 201
23.3 OPEIAtiONttt aaaa e 202
23.4 Starting @ CONVEISIONueiieiiiiiiiie st e e ettt e et e e e st ee e e e sneeae e e e s snnnaeeeas 203

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 6

ATmega32A

23.5 Prescaling and Conversion TiMiNg........coooiuiiiiiiiiiieeiee e 204
23.6 Changing Channel or Reference Selectioncccccveeviiiiiieiniiiieee i, 207
23.7 ADC NOISE CANCEIETeeiiiiiieiiiie it 208
23.8 ADC Conversion RESUIL..........oiiiiiiiiiieiie e s 212
23.9 Register DeSCriptionoooiiiiiiie e 214
24 JTAG Interface and On-chip Debug Systemccccccevvvvvvvivueeennnnns 218
241 FRAIUIES ... s 218
D © - V1= ST 218
243 TAP —TeSt ACCESS POItcoiiiiiiiiiiiiiiieee s 218
244 TAP CONIOIIET ...t 220
245 Using the Boundary-scan Chain...........ccccceviiiiiiieiiiiiie e 221
246 Using the On-chip Debug Systemccoooiiiiiiiiiiiiiiei e 221
247 On-chip Debug Specific JTAG INStructionscccceeeiiiiiiivieiiiiiee e, 222
24.8 Using the JTAG Programming Capabilitiesccceevieiiiieieiniiiiece e, 222
24.9 Register DeSCriptionoooiiiiiiiiiei e 223
2410 BiblOGraphyoe i 223
25 IEEE 1149.1 (JTAG) Boundary-scanccccceeveeeemmimmmsemmmmmmnmnnnnsnes 224
251 FRAIUIES ... s 224
25.2 OVEIVIBW ...iiieii ettt ettt rb ettt et e et e e s b e e e e e e b e nnns 224
25.3 Data ReQISIErS... .. 224
25.4 Boundary-scan Specific JTAG InStructionscccccvevviiiiiiiiciiiee e, 226
255 Boundary-scan Chaincccoccuiiiiiiiiiiiiee et 227
25.6 ATmega32A Boundary-scan Ordercccoiceieeeeiiiiiiieeeiniiieeeeeeiee e e 237
25.7 Boundary-scan Description Language Files..........cccccocieiiiiiiiiiiiiiiiiceceeeeee, 242
25.8 Register DeSCriptionoooiiiiiiieiee e 242
26 Boot Loader Support— Read-While-Write Self-Programming 243
26.1 FRAIUIES ... 243
26.2 OVEIVIBW ...eiiiiii ettt ettt rb ettt e s it e st e e s b e e e ebe e s nre e e nans 243
26.3 Application and Boot Loader Flash Sections...............cccccoiiiiiiieiinie, 243
26.4 Read-While-Write and no Read-While-Write Flash Sectionsc..c........ 243
26.5 Boot Loader LOCK BitScccoiiuiiiiiiiiiiiiie e 246
26.6 Entering the Boot Loader Programcooo i 247
26.7 Addressing the Flash during Self-Programming............cccccceeviiiiiieeniiineenenns 248
26.8 Self-Programming the FIash..........cccooiiiiiiiiiii e 249
26.9 Register DeSCriptionoooiiiiiiiieieie e 254

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 7

ATmega32A

27 Memory Programmlingcccccoooessemmmmmmmmmmmmmmmsmmmmmssssssssssssssssssssssnnes 256
271 Program And Data Memory LOCK BitScoooiiiiiiiiiiiiieeeiieeee e 256
272 FUSE BitS. .o s 257
27.3 SIgNature BYLESoeeiiiiiiiiiie s 258
27.4 Calibration BYLEcooiiiiiiiie i 258
275 PAQE SIZE ... 259
27.6 Parallel Programming Parameters, Pin Mapping, and Commands................ 259
27.7 Parallel Programming ... 261
27.8 SPI Serial DOWNIOAINGccooiiiiiiiiaiiiiiiie et 269
279 SPI Serial Programming Pin Mappingcueeeiiiiiiiiiieiiiiieece e 269
27.10 Programming via the JTAG Interfaceccoccveeiiiiiiiiiiee, 274
28 Electrical CharacteriStiCsccovvoeemmmmmmeemmsseeisiiisssssssssssssssssssssnnnnnns 286
28.1 Absolute Maximum Ratings™ooiiiiiiiiiiii e 286
28.2 DC CharacteriStiCsoiueiiiiiiiiiiiie et 286
P24 TR TS T 0T T=To [] =T [SRR 288
28.4 CloCk CharacteriStiCS.........uuiiiiiuiiiiiiiiii e 288
28.5 System and Reset Characteristicscviiiiiiiiiiiiiiiiiee e 289
28.6 Two-wire Serial Interface CharacteristiCscccovuiieiiiiiiiiiicii e, 289
28.7 SPI Timing CharacteristiCsuiiiiiiiiiiiiiiie e 291
28.8 ADC CharacteriStiCscuueieiiiiiiiieie ittt 293
29 Typical CharacteriStiCsccccceevvvrssisnmeeeiineneeeeee e e sssccsssss s sssssnas 296
291 Active SUPPIY CUITENT ... e e e 296
29.2 Idle SUPPLY CUITENE....ccoiiiiee et 299
29.3 Power-down Supply CUIMENt........cooiiiiiiiiiiiiie e 302
29.4 Power-save Supply CUITENT..........ooiiiiiii e 303
29.5 Standby Supply CUMENtc.eeiiiii e 304
2906 PN PUIRUD oottt sttt et teenne e e neenneeene e 304
29.7 Pin Driver Strength ... 306
29.8 Pin Thresholds and HySteresis..........cc.ueeiiiiiiiiiiiiiiiiee e 308
29.9 BOD Thresholds and Analog Comparator Offsetccccceiiiiiiiiiiiiiennns 311
29.10 Internal OsCillator SPEEdccuuiiiiiiiiiiiie e 313
29.11 Current Consumption of Peripheral Units..........ccccooiiiiiiii e, 319
29.12 Current Consumption in Reset and Reset Pulsewidthccccccceiiiiinni. 322
30 RegiSter SUMMArYceeeeeeeeeeeeeineeeessssssssssssssssssssssssnnnnnnnnssnsssssssses 324
31 Instruction Set SUMMAIYeeeeeeeeeeeieeeeeeeeeeeseeeeeeenennnnnnsssessssssns 326

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 8

ATmega32A

32 Ordering INfOrmationccoovvvueeeemmeeeeeeneieeee s 329
33 Packaging INformationccccoovvvmeemeeeemnieeeeee e 330
33T A A e 330
332 AOPB . e e e e s e e 331
333 AAMIT e 332
B) 4 - 1 - R 333
34.1 ATmega32A, rev. Jto rev. K ... e 333
34.2 ATmegal32A, rev. GO reV. | ... 334
35 Datasheet ReViSion HiStOrYcocooovvoeeeeemmmmmmeeeeseeiesccssssssssssssssssssnns 335
35.1 REV. A — T1/2018 .. 335
35.2 ReV.8155E — 02/2014cooiieie e 335
35.3 ReV. 8155D — 10/2013... .ottt 335
354 ReV. 8155C — 02/2011 .. ettt 335
35.5 ReV.8155B — 07/2009......ccoiiiiiiieiiiiieee e 335
35.6 ReV.8155A — 06/2008.........cccueiiiieiiiiiieee e 336

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 9

1.

ATmega32A

Pin Configurations

Figure 1-1. Pinout ATmega32A
PDIP
/
(XCK/TO) PBO] 1 40 [PAO (ADCO)
(T1) PB1 | 2 39 [J PA1 (ADC1)
(INT2/AINO) PB2] 3 38 [0 PA2 (ADC2)
(OCO/AIN1) PB3 [] 4 37 [0 PA3 (ADC3)
(8S) PB4 | 5 36 [1 PA4 (ADC4)
(MOSI) PB5 | 6 35 [PA5 (ADCS5)
(MISO) PB6 | 7 34 [PA6 (ADC6)
(SCK) PB7] 8 33 [J PA7 (ADC7)
RESET] 9 32 [J AREF
vcc O] 10 31 [GND
GND] 11 30 [J AvCC
XTAL2 | 12 29 [0 PC7 (TOSC2)
XTAL1] 13 28 [0 PC6 (TOSC1)
(RXD) PDO | 14 27 [PC5 (TDI)
(TXD) PD1] 15 26 [J PC4 (TDO)
(INTO) PD2] 16 25 [PC3 (TMS)
(INT1) PD3] 17 24 [PC2 (TCK)
(OC1B) PD4] 18 23 [1 PC1 (SDA)
(OC1A) PD5 | 19 22 [3 PCO (SCL)
(ICP1) PD6] 20 21 [0 PD7 (OC2)
TQFP/MLF
SN
= —
8z g sca®
~$ S X SRSRSRS!
|U) == =0 (e aNala
ARSI oS SSISISSRS
RN ER282z92
ononononn0O>aaana
LI I I Tl
® 44,42, .40, 38, .36,.34
(MOSI) PB5 [1 cocecceccccceeeem 33 [PA4 (ADCA4)
(MISO) PB6]| 2 1 32 [PA5 (ADCS5)
(SCK) PB7] 3 | ' 31 [J PA6 (ADCS6)
RESET] 4 ! 130 [PA7 (ADC7)
vecCc] 5 ! ' 29 [AREF
GND] 6 ! 128 [71 GND
XTAL2 7 127 1 AVCC
XTAL1] 8 1 26 [J PC7 (TOSC2)
(RXD) PDO] 9 1 25 [PC6 (TOSC1)
(TXD) PD1 | 10 , 1 24 [PC5 (TDI)
(INTO) PD2 [] 11/ """"""=""=""=="==-< 23 [PC4 (TDO)
14"%161718" 902722
/ U onog
MO S W0 © N~ O - AN ™M
Note: SEE558388¢88
Bottom pad should ~ e~~~ —~ —_——
be soldered to ground. E2<y 1) 3] E‘ 5 g
Z0000 DHEE
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 10

ATmega32A

2. Overview

The AVR® ATmega32A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architec-
ture. By executing powerful instructions in a single clock cycle, the ATmega32A achieves throughputs approaching
1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

21

Block Diagram

Figure 2-1.

vcec

Block Diagram

PAO - PA7
A A A A A &

PCO - PC7
A A A A A A 4 2

L
[

GND

| PORTA DRIVERS/BUFFERS

l

L.

PORTC DRIVERS/BUFFERS |

l

| PORTA DIGITAL INTERFACE | PORTC DIGITAL INTERFACE |
AvCC < | = >
w MU | _Anc i
ADC INTERFACE
AREF *é
* TIMERS/
OSCILLATOR
PROGRAM STACK N COUNTERS
COUNTER POINTER
T T
i PROGRAM | [T INTERNAL
i ‘| FLASH | :| SRAM e OSCILLATOR
i T
INSTRUCTION GENERAL WATCHDOG
REGISTER | |lpl pURPOSE TIMER OSCILLATOR
REGISTERS
ted X
INSTRUCTION | | | v MCU CTRL.
DECODER & TIMING
« z
CONTROL INTERRUPT INTERNAL
LINES i CALIBRATED
OSCILLATOR
STATUS

PROGRAMMING
s

COMP.
INTERFACE

XTALL

i

XTAL2

RESET

USART

| PORTB DIGITAL INTERFACE

l

| PORTB DRIVERS/BUFFERS

| PORTD DIGITAL INTERFACE |

l

| PORTD DRIVERS/BUFFERS |

v VvV
PBO - PB7

v v v

Y V¥V VYV VYV VYV V VY

PDO - PD7

The AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 11

2.2

2.21

2.2.2

223

224

ATmega32A

single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32A provides the following features: 32Kbytes of In-System Programmable Flash Program memory
with Read-While-Write capabilities, 1024bytes EEPROM, 2Kbyte SRAM, 32 general purpose /O lines, 32 general
purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming,
three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable
USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage
with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI
serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the
USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue
functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer con-
tinues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching
noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the
device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby
mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Microchip’s high density nonvolatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional non-
volatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use
any interface to download the application program in the Application Flash memory. Software in the Boot Flash
section will continue to run while the Application Flash section is updated, providing true Read-While-Write opera-
tion. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the
ATmega32A is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embed-
ded control applications.

The AVR ATmega32A is supported with a full suite of program and system development tools including: C compil-
ers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

vCC
Digital supply voltage.

GND
Ground.

Port A (PA7:PA0)
Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal
pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both
high sink and source capability. When pins PAO to PA7 are used as inputs and are externally pulled low, they will
source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition
becomes active, even if the clock is not running.

Port B (PB7:PB0)
Port B is an 8-bit bi-directional /O port with internal pull-up resistors (selected for each bit). The Port B output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 12

225

2.2.6

227

2.2.8

229

2.2.10

2.2.11

ATmega32A

Port B also serves the functions of various special features of the ATmega32A as listed on page 64.

Port C (PC7:PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a
reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-
tors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

Port C also serves the functions of the JTAG interface and other special features of the ATmega32A as listed on
page 66.

Port D (PD7:PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega32A as listed on page 68.

RESET
Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock
is not running. The minimum pulse length is given in Table 28-3 on page 289. Shorter pulses are not ensured to
generate a reset.

XTALA1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2
Output from the inverting Oscillator amplifier.

AVCC
AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V¢, even if
the ADC is not used. If the ADC is used, it should be connected to V¢ through a low-pass filter.

AREF
AREF is the analog reference pin for the A/D Converter.

3. Resources

A comprehensive set of development tools, application notes and data sheets are available for download on
http://www.microchip.com.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20
years at 85°C or 100 years at 25°C.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 13

ATmega32A

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These
code examples assume that the part specific header file is included before compilation. Be aware that not all C
Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Con-
firm with the C Compiler documentation for more details.

6. Capacitive touch sensing

The QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most AVR microcon-
trollers. The QTouch Library includes support for the QTouch and QMatrix™ acquisition methods.

Touch sensing can be added to any application by linking the appropriate QTouch Library for the AVR Microcon-
troller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the
touch sensing API’s to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Microchip website at the following location
http://www.microchip.com. For implementation details and other information, refer to the QTouch Library User
Guide - also available for download from the Microchip website.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 14

ATmega32A

7. AVR CPU Core

7.1

Overview
This section discusses the AVR® core architecture in general. The main function of the CPU core is to ensure cor-
rect program execution. The CPU must therefore be able to access memories, perform calculations, control

peripherals, and handle interrupts.

Figure 7-1. Block Diagram of the AVR MCU Architecture

(Data Bus 8-bit
Program Status
Flash Counter T and Control
Program
Memory <
i Interrupt
| - G32 X 8I [« Unit
nstruction eneral
Register Purpose SP|
< Registrers [Unit
Instruction Watchdo
Decoder > > Timer 9
o =4
£ 7]
7} (%]
i § g v Analog
Control Lines s 2 Comparator
< 5
5] 13
[0} =
= °
a £ [<>| 1/0 Modulel
Data le s> 110 Module 2
SRAM
j<—>| 1/O Module n
EEPROM [
I/O Lines €<

\/

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories
and buses for program and data. Instructions in the program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable

Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle

access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper-
ands are output from the Register File, the operation is executed, and the result is stored back in the Register File

—in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing —

enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register,

described later in this section.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 15

7.2

7.3

7.31

ATmega32A

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before sub-
routines or interrupts are executed). The Stack Pointer SP is read/write accessible in the 1/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in
the Status Register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have
priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the
priority.

The 1/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/0 functions. The I1/O Memory can be accessed directly, or as the Data Space locations following those of the Reg-
ister File, $20 - $5F.

ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-
functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the AVR Instruction Set Manual on www.microchip.com
for a detailed description.

Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the AVR Instruction Set Manual. This will in many
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

SREG - AVR Status Register!"

Bit 7 6 5 4 3 2 1 0
| 1 T H S v N z C | sReG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 16

7.4

ATmega32A

¢ Bit 7 - I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the inter-
rupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the Instruction Set Manual on
www.microchip.com.

* Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the oper-
ated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.

* Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a half carry in some arithmetic operations. Half Carry is useful in BCD arithmetic.

* Bit4-S:SignBit, S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V.

* Bit 3 —V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic.

* Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation.

* Bit1-2: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

e Bit 0-C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation.

Note: 1. Refer to the AVR Instruction Set Manual on www.microchip.com for more details.

General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required perfor-
mance and flexibility, the following input/output schemes are supported by the Register File:
* One 8-bit output operand and one 8-bit result input
» Two 8-bit output operands and one 8-bit result input
» Two 8-bit output operands and one 16-bit result input
» One 16-bit output operand and one 16-bit result input
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 17

ATmega32A

Figure 7-2. AVR CPU General Purpose Working Registers

RO

R1

R2

R13

General

R14

Purpose

R15

Working

R16

Registers

R17

R26

R27

R28

R29

R30

R31

Addr.

$00
$01
$02

$0D
$0E
$OF
$10
$11

$1A
$1B
$1C
$1D
$1E
$1F

X-register Low Byte
X-register High Byte
Y-register Low Byte
Y-register High Byte
Z-register Low Byte
Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of them are sin-

gle cycle instructions.

As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first
32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to

index any register in the file.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 18

7.41

7.5

ATmega32A

The X-register, Y-register and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z are
defined as described in Figure 7-3.

Figure 7-3. The X-, Y-, and Z-registers

15 XH XL 0
X - register |7 o7 0]
R27 ($1B) R26 ($1A)
15 YH YL
Y - register I 7 0 I 7 0 I
R29 ($1D) R28 ($1C)
15 ZH ZL 0
Z - register I 7 0 I 7 0 I
R31 ($1F) R30 ($1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic incre-
ment, and automatic decrement (see the AVR Instruction Set Manual on www.microchip.com for details).

Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory
locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data
SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease
the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts
are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be
set to point above start of the SRAM, see Figure 8-2 on page 24.

See Table 7-1 on page 19 for Stack Pointer details.

Table 7-1. Stack Pointer instructions
Instruction | Stack pointer Description
PUSH Decremented by 1 | Data is pushed onto the stack
CALL Return address is pushed onto the stack with a subroutine call or
ICALL Decremented by 2 | interrupt
RCALL
POP Incremented by 1 Data is popped from the stack
RET Incremented by 2 Return address is popped from the stack with return from
RETI subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small
that only SPL is needed. In this case, the SPH Register will not be present.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 19

ATmega32A

7.51 SPH and SPL - Stack Pointer High and Low Register
Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO
7 6 5 4 3 2 1 0
Read/Write RIW RIW R/W RIW RIW RIW RIW RIW
RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0
0 0 0 0 0
7.6 Instruction Execution Timing

SPH
SPL

This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the
CPU clock clkcpy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with
the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 7-4.

clkepy

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

The Parallel Instruction Fetches and Instruction Executions

T1 T2 T3

T4

A S N N S

Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 7-5.

clkepy

Total Execution Time
Register Operands Fetch
ALU Operation Execute

Result Write Back

Single Cycle ALU Operation

Tl T2 T3

T4

VA N S N S N A

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 20

7.7

ATmega32A

Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a
separate program vector in the program memory space. All interrupts are assigned individual enable bits which
must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the
interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits
BLBO2 or BLB12 are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 256 for details.

The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in “Interrupts” on page 51. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash sec-
tion by setting the IVSEL bit in the General Interrupt Control Register (GICR). Refer to “Interrupts” on page 51 for
more information. The Reset Vector can also be moved to the start of the boot Flash section by programming the
BOOTRST fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page 243.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user soft-
ware can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writ-
ing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit
is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the global interrupt enable bit is
set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not nec-
essarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.

When the AVR® exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 21

7.71

ATmega32A

Assembly Code Example

in rl16, SREG ; store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;
CcSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEl instruction to enable interrupts, the instruction following SEI will be executed before any pend-

ing interrupts, as shown in this example.

Assembly Code Example

sei ; set global interrupt enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt (s)

*/

Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock
cycles the program vector address for the actual interrupt handling routine is executed. During this four clock cycle
period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and
this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction
is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the

selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program
Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG

is set.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 22

ATmega32A

8. AVR Memories

8.1

8.2

Overview

This section describes the different memories in the ATmega32A. The AVR architecture has two main memory
spaces, the Data Memory and the Program Memory space. In addition, the ATmega32A features an EEPROM
Memory for data storage. All three memory spaces are linear and regular.

In-System Reprogrammable Flash Program Memory

The ATmega32A contains 32Kbytes On-chip In-System Reprogrammable Flash memory for program storage.
Since all AVR instructions are 16 bits or 32 bits wide, the Flash is organized as 16K x 16. For software security, the
Flash Program memory space is divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega32A Program Counter
(PC) is 14 bits wide, thus addressing the 16K program memory locations. The operation of Boot Program section
and associated Boot Lock bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 243. “Memory Programming” on page 256 contains a detailed description
on Flash Programming in SPI, JTAG, or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load Program
Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 20.

Figure 8-1. Program Memory Map

$0000

Application Flash Section

B ———

Boot Flash Section
$3FFF

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 23

ATmega32A

8.3 SRAM Data Memory
Figure 8-2 shows how the AVR ATmega32A SRAM Memory is organized.
The lower 2144 Data Memory locations address the Register File, the I/O Memory, and the internal data SRAM.

The first 96 locations address the Register File and I1/0O Memory, and the next 2048 locations address the internal
data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indi-
rect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the
indirect Addressing Pointer Registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-
register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address
registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 2048bytes of internal data SRAM in the
ATmega32A are all accessible through all these addressing modes. The Register File is described in “General Pur-
pose Register File” on page 17.

Figure 8-2. Data Memory Map

Register File Data Address Space

RO 1 $0000

R1 $0001

R2 $0002

R29 $001D
R30 $001E

R3+ 1 $001F

I/O Registers

$00 $0020

$01 $0021

$02 $0022
$3D $005D
$3E $005E
$3F 1 $005F

Internal SRAM

$0060

$0061

$085E

$085F

8.3.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM
access is performed in two clkgp cycles as described in Figure 8-3.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 24

8.4

8.41

8.4.2

ATmega32A

Figure 8-3. On-chip Data SRAM Access Cycles

T1 T2 T3

S A N S N S

CPU \ | |
Address | Compute Address | X__ Address Valid |
I I I
Data ; : ! =,
| I | ‘E’
I I I
WR L/ \ =
I I I —
I I } -
Data f 1 | =
1 1 T It
| | | &
RD ! L/ :\
T T —
I I I
Memory Access Instruction Next Instruction

EEPROM Data Memory

The AVR ATmega32A contains 1024bytes of data EEPROM memory. It is organized as a separate data space, in
which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase
cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM
Address Registers, the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 256 contains a detailed description on EEPROM Programming in SPI, JTAG, or
Parallell Programming mode.

EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the 1/0 space.

The write access time for the EEPROM is given in Table 8-1 on page 28. A self-timing function, however, lets the
user software detect when the next byte can be written. If the user code contains instructions that write the
EEPROM, some precautions must be taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on
Power-up/down. This causes the device for some period of time to run at a voltage lower than specified as mini-
mum for the clock frequency used. See “Preventing EEPROM Corruption” on page 26 for details on how to avoid
problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the
description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When
the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

EEPROM Write During Power-down Sleep Mode
When entering Power-down Sleep mode while an EEPROM write operation is active, the EEPROM write operation
will continue, and will complete before the Write Access time has passed. However, when the write operation is
completed, the Oscillator continues running, and as a consequence, the device does not enter Power-down
entirely. It is therefore recommended to verify that the EEPROM write operation is completed before entering
Power-down.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 25

8.4.3

8.5

ATmega32A

Preventing EEPROM Corruption
During periods of low V¢ the EEPROM data can be corrupted because the supply voltage is too low for the CPU
and the EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and
the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage is too low.

EPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the
needed detection level, an external low V. Reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the power supply voltage is
sufficient.

1/0 Memory
The 1/O space definition of the AVR ATmega32A is shown in “Register Summary” on page 324.

All ATmega32A 1/Os and peripherals are placed in the 1/0 space. The /O locations are accessed by the IN and
OUT instructions, transferring data between the 32 general purpose working registers and the 1/0 space. I/0 Reg-
isters within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the AVR
Instruction Set Manual on www.microchip.com. When using the 1/O specific commands IN and OUT, the I/O
addresses $00 - $3F must be used. When addressing I/0 Registers as data space using LD and ST instructions,
$20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will
operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI
and SBI instructions work with registers $00 to $1F only.

The I/O and Peripherals Control Registers are explained in later sections.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 26

8.6

8.6.1

8.6.2

8.6.3

ATmega32A

Register Description

EEARH and EEARL - EEPROM Address Register

Bit 15 14 13 12 " 10 9 8
- - - - - - EEAR9 EEARS8 EEARH
EEAR7 EEAR6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X X

¢ Bits [15:10] — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

* Bits [9:0] - EEAR9:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL - specify the EEPROM address in the 1024bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 1023. The initial value of EEAR
is undefined. A proper value must be written before the EEPROM may be accessed.

EEDR - EEPROM Data Register

Bit 7 6 5 4 3 2 1 0

| wse | | | LsB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits [7:0] - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in the
address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out from
the EEPROM at the address given by EEAR.

EECR - EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

| - | - | - | - EERIE EEMWE EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X 0

* Bits [7:4] — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing EERIE to zero dis-
ables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEWE is cleared.

¢ Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is
set, setting EEWE within four clock cycles will write data to the EEPROM at the selected address If EEMWE is
zero, setting EEWE will have no effect. When EEMWE has been written to one by software, hardware clears the bit
to zero after four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 27

ATmega32A

¢ Bit 1 — EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are cor-
rectly set up, the EEWE bit must be written to one to write the value into the EEPROM. The EEMWE bit must be
written to one before a logical one is written to EEWE, otherwise no EEPROM write takes place. The following pro-
cedure should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential):

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that the
Flash programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software con-
tains a Boot Loader allowing the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on page 243 for details about
boot programming.

ok 0N~

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master Write
Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM Access, the
EEAR or EEDR reGister will be modified, causing the interrupted EEPROM Access to fail. It is recommended to
have the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles before
the next instruction is executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal — EERE - is the read strobe to the EEPROM. When the correct address is set
up in the EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM
read access takes one instruction, and the requested data is available immediately. When the EEPROM is read,
the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it is neither
possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-1 lists the typical programming time for
EEPROM access from the CPU.

Table 8-1. EEPROM Programming Time

Number of Calibrated RC Oscillator
Symbol Cyclesm Typ Programming Time
EEPROM write (from CPU) 8448 8.5ms

Note: 1. Uses 1MHz clock, independent of CKSEL Fuse setting.

The following code examples show one assembly and one C function for writing to the EEPROM. The examples
assume that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur
during execution of these functions. The examples also assume that no Flash Boot Loader is present in the soft-
ware. If such code is present, the EEPROM write function must also wait for any ongoing SPM command to finish.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 28

ATmega32A

Assembly Code Example

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM write
; Set up address (rl18:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rlé) to data register
out EEDR,rlé6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR,EEWE

ret

C Code Example

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address and data registers */

EEAR = uilAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE) ;

/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 29

ATmega32A

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that

interrupts are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM read
; Set up address (rl18:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in rl6,EEDR

ret

C Code Example

unsigned char EEPROM read (unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 30

ATmega32A

9. System Clock and Clock Options

9.1

9.11

9.1.2

9.1.3

Clock Systems and their Distribution

Figure 9-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be
active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted
by using different sleep modes, as described in “Power Management and Sleep Modes” on page 39. The clock
systems are detailed Figure 9-1.

Figure 9-1. Clock Distribution

Asynchronous General /0 Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
A 4 4 4 A A A 4
clkapc
clkyo AVR Clock clkgpy
Control Unit
Clkasy ClKeiash
Y A
Reset Logic Watchdog Timer
Pt g
Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
A A A A A

]

Timer/Counter External RC External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Oscillator Crystal Oscillator Oscillator

CPU Clock - clkcpy
The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such mod-
ules are the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer.
Halting the CPU clock inhibits the core from performing general operations and calculations.

I/10 Clock - clkq
The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/O clock is
also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous
logic, allowing such interrupts to be detected even if the 1/O clock is halted. Also note that address recognition in
the TWI module is carried out asynchronously when clk,q is halted, enabling TWI address reception in all sleep
modes.

Flash Clock — clkg asy
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the
CPU clock.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 31

9.14

9.1.5

9.2

9.3

9.4

ATmega32A

Asynchronous Timer Clock — clk,gy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an external
32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-time counter even when
the device is in sleep mode.

ADC Clock — clkapc
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce
noise generated by digital circuitry. This gives more accurate ADC conversion results.

Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown below. The clock from
the selected source is input to the AVR clock generator, and routed to the appropriate modules.

Table 9-1. Device Clocking Options Select"

Device Clocking Option CKSEL3:0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU wakes up from
Power-down or Power-save, the selected clock source is used to time the start-up, ensuring stable Oscillator oper-
ation before instruction execution starts. When the CPU starts from Reset, there is as an additional delay allowing
the power to reach a stable level before commencing normal operation. The Watchdog Oscillator is used for timing
this real-time part of the start-up time. The number of WDT Oscillator cycles used for each time-out is shown in
Table 9-2. The frequency of the Watchdog Oscillator is voltage dependent as shown in “Register Summary” on
page 324.

Table 9-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)

Default Clock Source

The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is therefore the 1MHz
Internal RC Oscillator with longest startup time. This default setting ensures that all users can make their desired
clock source setting using an In-System or Parallel Programmer.

Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as
an On-chip Oscillator, as shown in Figure 9-2. Either a quartz crystal or a ceramic resonator may be used. The
CKOPT Fuse selects between two different Oscillator amplifier modes. When CKOPT is programmed, the Oscilla-
tor output will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operating in a very noisy
environment or when the output from XTAL2 drives a second clock buffer. This mode has a wide frequency range.
When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces power consumption con-
siderably. This mode has a limited frequency range and it can not be used to drive other clock buffers.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 32

ATmega32A

For resonators, the maximum frequency is 8MHz with CKOPT unprogrammed and 16 MHz with CKOPT pro-
grammed. C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors
depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the
environment. Some initial guidelines for choosing capacitors for use with crystals are given in Table 9-3. For
ceramic resonators, the capacitor values given by the manufacturer should be used.

Figure 9-2. Crystal Oscillator Connections

C2
— }—F XTAL2
]

0—(): L XTAL1

GND

il

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL3:1 as shown in Table 9-3.

Table 9-3. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors C1
CKOPT CKSEL3:1 (MHz) and C2 for Use with Crystals (pF)
1 101" 0.4-0.9 -
1 110 0.9-3.0 12-22
1 11 3.0-8.0 12-22
0 101, 110, 111 1.0< 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.
The CKSELO Fuse together with the SUT1:0 fuses select the start-up times as shown in Table 9-4.

Table 9-4. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Vee = 5.0V) Recommended Usage

0 00 258 CK(" 41ms Ceramic resonator, fast rising
power

0 01 258 CK(" 65ms Qgramlc resonator, slowly
rising power

0 10 1K CK® _ Ceramic resonator, BOD
enabled

0 1 1K CK® 41ms Ceramic resonator, fast rising
power

1 00 1K CK® 65ms Qgramlc resonator, slowly
rising power

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 33

9.5

9.6

ATmega32A

Table 9-4. Start-up Times for the Crystal Oscillator Clock Selection (Continued)

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Vee = 5.0V) Recommended Usage

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 41ms Crystal Oscillator, fast rising
power

1 1 16K CK B65ms erstal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and only if
frequency stability at start-up is not important for the application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They can
also be used with crystals when not operating close to the maximum frequency of the device, and if frequency sta-
bility at start-up is not important for the application.

Low-frequency Crystal Oscillator

To use a 32.768kHz watch crystal as the clock source for the device, the Low-frequency Crystal Oscillator must be
selected by setting the CKSEL fuses to “1001”. The crystal should be connected as shown in Figure 9-2. By pro-
gramming the CKOPT Fuse, the user can enable internal capacitors on XTAL1 and XTALZ2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 9-5.

Table 9-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vee = 5.0V) Recommended Usage
00 1K ck 4.1ms Fast rising power or BOD enabled
01 1K cK™ 65ms Slowly rising power
10 32K CK 65ms Stable frequency at start-up
11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important for the application.

External RC Oscillator

For timing insensitive applications, the external RC configuration shown in Figure 9-3 can be used. The frequency
is roughly estimated by the equation f = 1/(3RC). C should be at least 22 pF. By programming the CKOPT Fuse,
the user can enable an internal 36 pF capacitor between XTAL1 and GND, thereby removing the need for an exter-
nal capacitor. For more information on Oscillator operation and details on how to choose R and C, refer to the
External RC Oscillator application note.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 34

9.7

ATmega32A

Figure 9-3. External RC Configuration

XTAL2

GND

VCC
R $ NC

I XTAL1
C

Jli

The Oscillator can operate in four different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL3:0 as shown in Table 9-6.

Table 9-6. External RC Oscillator Operating Modes

CKSEL3:0 Frequency Range (MHz)
0101 0.1-0.9
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-120

When this Oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 9-7.

Table 9-7. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Ve =5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1ms Fast rising power
10 18 CK 65ms Slowly rising power
11 6 cK(™" 4.1ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of the device.

Calibrated Internal RC Oscillator

The Calibrated Internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All frequencies are nominal
values at 5V and 25°C. This clock may be selected as the system clock by programming the CKSEL fuses as
shown in Table 9-8. If selected, it will operate with no external components. The CKOPT Fuse should always be
unprogrammed when using this clock option. During Reset, hardware loads the calibration byte for the 1MHz into
the OSCCAL Register and thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0MHz Oscillator
frequency selected, this calibration gives a frequency within £3% of the nominal frequency. Using calibration meth-
ods as described in application notes available at www.microchip.com, it is possible to achieve 1% accuracy at
any given Vg and Temperature. When this Oscillator is used as the Chip Clock, the Watchdog Oscillator will still
be used for the Watchdog Timer and for the reset time-out. For more information on the pre-programmed calibra-
tion value, see the section “Calibration Byte” on page 258.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 35

9.8

ATmega32A

Table 9-8. Internal Calibrated RC Oscillator Operating Modes

CKSEL3:0 Nominal Frequency (MHz)
0001(" 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 9-9. XTAL1
and XTALZ2 should be left unconnected (NC).

Table 9-9. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vee = 5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10() 6 CK 65ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 9-4 on page 36. To
run the device on an external clock, the CKSEL fuses must be programmed to “0000”. By programming the
CKOPT Fuse, the user can enable an internal 36pF capacitor between XTAL1 and GND.

Figure 9-4. External Clock Drive Configuration

NC —— XTAL2
EXTERNAL
cLocK ————— XTAL1
SIGNAL

GND

-

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 36

9.9

ATmega32A

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 9-10.

Table 9-10. Start-up Times for the External Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vee =5.0V) Recommended Usage

00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10 6 CK 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure
stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to
unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock

frequency.

Timer/Counter Oscillator

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is connected directly
between the pins. No external capacitors are needed. The Oscillator is optimized for use with a 32.768kHz watch
crystal. Applying an external clock source to TOSC1 is not recommended.

Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator and the internal
capacitors have the same nominal value of 36pF.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 37

9.10

9.10.1

ATmega32A

Register Description

OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

| cALz | cAe | cALs | cALa | cCAL3 CAL2 CALA1 CAL0O | osccAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

* Bits 7:0 — CAL7:0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process variations from the
Oscillator frequency. During Reset, the 1MHz calibration value which is located in the signature row High Byte
(address 0x00) is automatically loaded into the OSCCAL Register. If the internal RC is used at other frequencies,
the calibration values must be loaded manually. This can be done by first reading the signature row by a program-
mer, and then store the calibration values in the Flash or EEPROM. Then the value can be read by software and
loaded into the OSCCAL Register. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-
zero values to this register will increase the frequency of the Internal Oscillator. Writing $FF to the register gives
the highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash access. If EEPROM
or Flash is written, do not calibrate to more than 10% above the nominal frequency. Otherwise, the EEPROM or
Flash write may fail. Note that the Oscillator is intended for calibration to 1.0, 2.0z, 4.0, or 8.0MHz. Tuning to other
values is not ensured, as indicated in Table 9-11.

Table 9-11. Internal RC Oscillator Frequency Range

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
$00 50 100
$7F 75 150
$FF 100 200

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 38

ATmega32A

10. Power Management and Sleep Modes

10.1

10.2

Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR
provides various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

Figure 9-1 on page 31 presents the different clock systems in the ATmega32A, and their distribution. The figure is
helpful in selecting an appropriate sleep mode. Table 10-1 shows the different clock options and their wake-up

sources.

Table 10-1. Active Clock Domains and Wake Up Sources in the Different Sleep Modes

Active Clock domains Oscillators Wake-up Sources
T = s
2 2 o 3
x © = 0 14
SE| @ £ i
- T
2 3.8 328 5% ool %5 5 3% o s
5 ra o < 2 £5 ® A =L =g O
£ EEFE £ s
Sleep Mode S S| S| B S| 28 £4 2zzzZ Eg En| b <Qf. 58
Idle X | X | X X | x@ X X X X | X| X
ADC Noise X| x| x | x&| x® X X X | x
Reduction
Power-down x@) X
Power-save x@ x@ x@) X x@
Standby!") X X3 X
Extended @) @) 3) @)
Standby(" S I X XX

Notes: 1. External Crystal or resonator selected as clock source.

2. If AS2 bitin ASSR is set.

3. Only INT2 or level interrupt INT1 and INTO.
To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP instruction
must be executed. The SM2, SM1, and SMO bits in the MCUCR Register select which sleep mode (Idle, ADC
Noise Reduction, Power-down, Power-save, Standby, or Extended Standby) will be activated by the SLEEP
instruction. See Table 10-2 on page 43 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for
four cycles in addition to the start-up time, it executes the interrupt routine, and resumes execution from the instruc-
tion following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from
sleep. If a Reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

Idle Mode

When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU
but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial Interface, Timer/Counters, Watchdog, and
the interrupt system to continue operating. This sleep mode basically halts clkepy and clkg sy, While allowing the
other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer
Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator interrupt is not

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 39

10.3

10.4

10.5

10.6

ATmega32A

required, the Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator Control
and Status Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is enabled, a conver-
sion starts automatically when this mode is entered.

ADC Noise Reduction Mode

When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode,
stopping the CPU but allowing the ADC, the External Interrupts, the Two-wire Serial Interface address watch,
Timer/Counter2 and the Watchdog to continue operating (if enabled). This sleep mode basically halts clk;q, Clkcpy,
and clkg asn, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is
enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion Complete
interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface Address
Match Interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External level interrupt on INTO
or INT1, or an external interrupt on INT2 can wake up the MCU from ADC Noise Reduction mode.

Power-down Mode

When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In this
mode, the External Oscillator is stopped, while the External interrupts, the Two-wire Serial Interface address
watch, and the Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, an External level interrupt on INTO or INT1, or an
External interrupt on INT2 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing
operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be held
for some time to wake up the MCU. Refer to “External Interrupts” on page 73 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the wake-up
becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up
period is defined by the same CKSEL fuses that define the reset time-out period, as described in “Clock Sources”
on page 32.

Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode. This
mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, that is, the AS2 bit in ASSR is set, Timer/Counter2 will run during
sleep. The device can wake up from either Timer Overflow or Output Compare event from Timer/Counter2 if the
corresponding Timer/Counter2 interrupt enable bits are set in TIMSK, and the Global Interrupt Enable bit in SREG
is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended instead of Power-
save mode because the contents of the registers in the Asynchronous Timer should be considered undefined after
wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous modules, includ-
ing Timer/Counter2 if clocked asynchronously.

Standby Mode

When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the Oscillator is
kept running. From Standby mode, the device wakes up in six clock cycles.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 40

10.7

10.8

10.8.1

10.8.2

10.8.3

10.8.4

10.8.5

10.8.6

ATmega32A

Extended Standby Mode

When the SM2:0 bits are 111 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Extended Standby mode. This mode is identical to Power-save mode with the exception that
the Oscillator is kept running. From Extended Standby mode, the device wakes up in six clock cycles.

Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR controlled system.
In general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as
few as possible of the device’s functions are operating. All functions not needed should be disabled. In particular,
the following modules may need special consideration when trying to achieve the lowest possible power
consumption.

Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering
any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion.
Refer to “Analog to Digital Converter” on page 201 for details on ADC operation.

Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering ADC Noise
Reduction mode, the Analog Comparator should be disabled. In the other sleep modes, the Analog Comparator is
automatically disabled. However, if the Analog Comparator is set up to use the Internal Voltage Reference as
input, the Analog Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Reference will
be enabled, independent of sleep mode. Refer to “Analog Comparator” on page 198 for details on how to configure
the Analog Comparator.

Brown-out Detector
If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-out Detec-
tor is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and hence, always consume power. In the
deeper sleep modes, this will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tion” on page 46 for details on how to configure the Brown-out Detector.

Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the Analog Comparator
or the ADC. If these modules are disabled as described in the sections above, the internal voltage reference will be
disabled and it will not be consuming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be used immediately. Refer to
“Internal Voltage Reference” on page 47 for details on the start-up time.

Watchdog Timer
If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer is
enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 48 for details on
how to configure the Watchdog Timer.

Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing
is then to ensure that no pins drive resistive loads. In sleep modes where the both the 1/0 clock (clk,q) and the
ADC clock (clkapc) are stopped, the input buffers of the device will be disabled. This ensures that no power is con-
sumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 60 for

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 41

ATmega32A

details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or have an analog
signal level close to V/2, the input buffer will use excessive power.

10.8.7 JTAG Interface and On-chip Debug System

« If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or Power save
sleep mode, the main clock source remains enabled. In these sleep modes, this will contribute significantly to
the total current consumption. There are three alternative ways to avoid this:

» Disable OCDEN Fuse.
» Disable JTAGEN Fuse.
« Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is not shifting data.
If the hardware connected to the TDO pin does not pull up the logic level, power consumption will increase. Note
that the TDI pin for the next device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit
in the MCUCSR register to one or leaving the JTAG fuse unprogrammed disables the JTAG interface.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 42

10.9

10.9.1

ATmega32A

Register Description

MCUCR - MCU Control Register
The MCU Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
| s | sm2 | smt | swmo | isci1 | Iscto | Isco1 | Iscoo | MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is exe-
cuted. To avoid the MCU entering the sleep mode unless it is the programmers purpose, it is recommended to
write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately
after waking up.

¢ Bits 6:4 — SM2:0: Sleep Mode Select Bits 2,1, and 0
These bits select between the six available sleep modes as shown in Table 10-2.

Table 10-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby!")
1 1 1 Extended Standby(”

Note: 1. Standby mode and Extended Standby mode are only available with external crystals or resonators.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 43

ATmega32A

11. System Control and Reset

11.1

11.2

Resetting the AVR

During Reset, all I/O Registers are set to their initial values, and the program starts execution from the Reset Vec-
tor. The instruction placed at the Reset Vector must be a JMP — absolute jump — instruction to the reset handling
routine. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while
the Interrupt Vectors are in the Boot section or vice versa. The circuit diagram in Figure 11-1 shows the reset logic.
“System and Reset Characteristics” on page 289 defines the electrical parameters of the reset circuitry.

The I/0O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not
require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the Internal Reset. This allows the
power to reach a stable level before normal operation starts. The time-out period of the delay counter is defined by
the user through the CKSEL Fuses. The different selections for the delay period are presented in “Clock Sources”
on page 32.

Reset Sources
The ATmega32A has five sources of reset:

» Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (Vpgr).

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum
pulse length.

» Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled.

» Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out Reset threshold (Vgo7)
and the Brown-out Detector is enabled.

» JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan chains
of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-scan” on page 224 for details.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 44

ATmega32A

Figure 11-1. Reset Logic

DATA BUS

MCU Control and Status
Register (MCUCSR)
[TRQTR TR TR TS
o) | @] | o
o|o|El gl
vee Power-on RN
Reset Circuit
BODEN Brown-_out_
BODLEVEL Reset Circuit
-
w
[; Pull-up Resistor E
SPIKE - \ \ | o
RESET FILTER Reset Circuit 1| s Q %
H , £
i}
R =
I m z
w =
JTAG Reset Watchdog HIJ
Register Timer o
fm}
[
1 5
=)
Watchdog 8
Oscillator
Y
Clock CK Delay Counters —
Generator ” TIMEOUT
CKSEL[3:0] —4T
SUT[1:0]

11.21 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is defined in “Sys-
tem and Reset Characteristics” on page 289. The POR is activated whenever V. is below the detection level. The
POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset
threshold voltage invokes the delay counter, which determines how long the device is kept in RESET after V rise.
The RESET signal is activated again, without any delay, when V. decreases below the detection level.

Figure 11-2. MCU Start-up, RESET Tied to V¢

1
- Veor
Vee J

1
1
1
|
1
A,
RESET _/./ RST
1
1
:
< tour 4"

INTERNAL | |
RESET

TIME-OUT

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 45

ATmega32A

Figure 11-3. MCU Start-up, RESET Extended Externally

1
-7 Veor
Vee |

RESET

TIME-OUT

INTERNAL |
RESET

11.2.2 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse
width (see “System and Reset Characteristics” on page 289) will generate a reset, even if the clock is not running.
Shorter pulses are not ensured to generate a reset. When the applied signal reaches the Reset Threshold Voltage
— Vggt — ON its positive edge, the delay counter starts the MCU after the Time-out period t;o 1 has expired.

Figure 11-4. External Reset During Operation

Vee
RESET | 1
1 1
1
|
<— trour 4"
TIME-OUT !

INTERNAL | |
RESET

11.2.3 Brown-out Detection
ATmega32A has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢ level during operation by
comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the fuse BODLEVEL to be
2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to
ensure spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as Vggory = Vgor
+ Viyst/2 and Vgor. = Vgor - Viyst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled (BODEN programmed),
and V¢ decreases to a value below the trigger level (Vgor. in Figure 11-5), the Brown-out Reset is immediately
activated. When V; increases above the trigger level (Vggt, in Figure 11-5), the delay counter starts the MCU
after the Time-out period t;q 1 has expired.

The BOD circuit will only detect a drop in V if the voltage stays below the trigger level for longer than tgop given
in “System and Reset Characteristics” on page 289.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 46

11.24

11.3

11.3.1

ATmega32A

Figure 11-5. Brown-out Reset During Operation

Vee
| |
| |
l l
RESET j j
I I
| |
| |
I I
TIME-OUT ! < trout
| |
I I
| |
INTERNAL ‘ l
RESET ! |

Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of
this pulse, the delay timer starts counting the Time-out period t;qr. Refer to “Watchdog Timer” on page 41 for
details.

Figure 11-6. Watchdog Reset During Operation

VCC
RESET
WDT —> [«— 1 CK Cycle
TIME-OUT n
o
1
1
RESET | trout |
TIME-OUT |
1

INTERNAL | |
RESET

Internal Voltage Reference

ATmega32A features an internal bandgap reference. This reference is used for Brown-out Detection, and it can be
used as an input to the Analog Comparator or the ADC. The 2.56V reference to the ADC is generated from the
internal bandgap reference.

Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given
in “System and Reset Characteristics” on page 289. To save power, the reference is not always turned on. The ref-
erence is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR).

3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow
the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power con-
sumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is
turned off before entering Power-down mode.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 47

ATmega32A

11.4 Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1MHz. This is the typical value at
V¢ = 5V. See characterization data for typical values at other V- levels. By controlling the Watchdog Timer pres-
caler, the Watchdog Reset interval can be adjusted as shown in Table 11-1 on page 50. The WDR — Watchdog
Reset — instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is disabled and when a
Chip Reset occurs. Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega32A resets and executes from the Reset Vector. For
timing details on the Watchdog Reset, refer to page 47.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be followed when the Watch-
dog is disabled. Refer to the description of the Watchdog Timer Control Register for details.

Figure 11-7. Watchdog Timer

WATCHDOG = WATCHDOG
OSCILLATOR > PRESCALER
I XIX|IX|X|X| XX
RN EEERE
ololol =922l
WATCHDOG 21313|3|8|3|a|o
o|lo|o|2|a
RESET o| o
YVYVYVYVYYVY
WDPO N
WDP1 P
WDP2 AN
WDE
MCU RESET

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 48

11.5

11.5.1

11.5.2

ATmega32A

Register Description

MCUCSR - MCU Control and Status Register
The MCU Control and Status Register provides information on which reset source caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0

| oo | sc2 | = | JTRF | WDRF | BORF | EXTRF | PORF | MCUCSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

* Bit4 - JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG instruction
AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

¢ Bit 3 - WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

* Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

¢ Bit 1 - EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

* Bit 0 - PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then reset the MCUCSR as
early as possible in the program. If the register is cleared before another reset occurs, the source of the reset can
be found by examining the Reset Flags.

WDTCR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0
| - | - | - | WDTOE | WDE WDP2 WDP1 WDP0 | WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:5 — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

* Bit4 - WDTOE: Watchdog Turn-off Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not be disabled. Once
written to one, hardware will clear this bit after four clock cycles. Refer to the description of the WDE bit for a
Watchdog disable procedure.

¢ Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written to logic zero, the
Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit has logic level one. To disable an
enabled Watchdog Timer, the following procedure must be followed:

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 49

ATmega32A

1. In the same operation, write a logic one to WDTOE and WDE. A logic one must be written to WDE even

though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

¢ Bits 2:0 - WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watchdog Timer is
enabled. The different prescaling values and their corresponding Timeout Periods are shown in Table 11-1.

Table 11-1. Watchdog Timer Prescale Select
Number of WDT Typical Time-out Typical Time-out
wWDP2 | WDP1 | WDPO Oscillator Cycles at Vgc = 3.0V at Ve = 5.0V
0 0 0 16K (16,384) 17.1ms 16.3ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5ms 65ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 1.1s 1.0s
1 1 1 2,048K (2,097,152) 2.2s 2.1s

The following code example shows one assembly and one C function for turning off the WDT. The example
assumes that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur

during execution of these functions.

Assembly Code Example

WDT off:
; reset WDT
wdr
; Write logical one to WDTOE and WDE
WDTCR
(1<<WDTOE) | (1<<WDE)
out WDTCR, rlé
; Turn off WDT

in ril6,

ori rileé6,

1di rl16, (0<<WDE)
out WDTCR, rlé6
ret

C Code Example

void WDT_off (void)

{

/* reset WDT */

_WDR () ;
/* Write logical one to WDTOE and WDE */
WDTCR |= (1<<WDTOE) | (1<<WDE);

/* Turn off WDT */
WDTCR = 0x00;

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 50

ATmega32A

12. Interrupts

This section describes the specifics of the interrupt handling as performed in ATmega32A. For a general explana-

tion of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on page 21.

12.1 Interrupt Vectors in ATmega32A
Table 12-1. Reset and Interrupt Vectors
Program
Vector No. Address® Source Interrupt Definition
1 $000(" RESET External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset
2 $002 INTO External Interrupt Request 0
3 $004 INT1 External Interrupt Request 1
4 $006 INT2 External Interrupt Request 2
5 $008 TIMER2 COMP Timer/Counter2 Compare Match
6 $00A TIMER2 OVF Timer/Counter2 Overflow
7 $ooC TIMER1 CAPT Timer/Counter1 Capture Event
8 $00E TIMER1 COMPA | Timer/Counter1 Compare Match A
9 $010 TIMER1 COMPB | Timer/Counter1 Compare Match B
10 $012 TIMER1 OVF Timer/Counter1 Overflow
11 $014 TIMERO COMP Timer/Counter0 Compare Match
12 $016 TIMERO OVF Timer/Counter0 Overflow
13 $018 SPI, STC Serial Transfer Complete
14 $01A USART, RXC USART, Rx Complete
15 $01C USART, UDRE USART Data Register Empty
16 $01E USART, TXC USART, Tx Complete
17 $020 ADC ADC Conversion Complete
18 $022 EE_RDY EEPROM Ready
19 $024 ANA_COMP Analog Comparator
20 $026 TWI Two-wire Serial Interface
21 $028 SPM_RDY Store Program Memory Ready
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the Boot Loader address at reset, see “Boot

Loader Support — Read-While-Write Self-Programming” on page 243.

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot Flash section. The
address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash
section.

Table 12-2 shows Reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL
settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while
the Interrupt Vectors are in the Boot section or vice versa.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 51

ATmega32A

Table 12-2. Reset and Interrupt Vectors Placement!"
BOOTRST IVSEL Reset address Interrupt Vectors Start Address
1 0 $0000 $0002
1 1 $0000 Boot Reset Address + $0002
0 0 Boot Reset Address $0002
0 1 Boot Reset Address Boot Reset Address + $0002
Note: 1. The Boot Reset Address is shown in Table 26-6 on page 253. For the BOOTRST Fuse “1” means unprogrammed

Address Labels

$000
$002
$004
$006
$008
S00A
$00C
SO0E
$010
$012
$014
$016
$018
S01A
$01cC
SO1E
$020
$022
$024
$026
$028
$S02A
$02B
$02C
$02D
SO02E
SO02F

while “0” means programmed.
The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega32A is:

RESET:

Code

jmp RESET

jmp EXT INTO
jmp EXT_ INT1
jmp EXT INT2
jmp TIM2_ COMP
jmp TIM2_ OVF
jmp TIM1_CAPT
jmp TIM1 COMPA
jmp TIM1_ COMPB
jmp TIM1_OVF
jmp TIMO_COMP
jmp TIMO_OVF
jmp SPI_STC
jmp USART RXC
jmp USART UDRE
jmp USART TXC
jmp ADC

jmp EE_RDY

jmp ANA COMP
jmp TWI

jmp SPM_RDY
1di

out SPH,rle6
1di rlé6,low (RAMEND)
out SPL,rlé6
sei

<instr> xxx

Comments

7

I

7

7

I

7

7

7

7

7

I

7

7

I

7

I

7

7

7

7

7

Reset Handler
IRQO0 Handler
IRQ1 Handler
IRQ2 Handler
Timer2 Compare Handler
Timer2 Overflow Handler
Timerl Capture Handler
Timerl CompareA Handler
Timerl CompareB Handler
Timerl Overflow Handler
Timer0 Compare Handler
TimerO0 Overflow Handler

SPI Transfer Complete Handler
USART RX Complete Handler

UDR Empty Handler

USART TX Complete Handler

ADC Conversion Complete Handler
EEPROM Ready Handler

Analog Comparator Handler
Two-wire Serial Interface Handler

Store Program Memory Ready Handler

rl6,high (RAMEND); Main program start

7

7

Set Stack Pointer to top of RAM

Enable interrupts

© 2018 Microchip Technology Inc.

Data Sheet Complete DS40002072A-page 52

ATmega32A

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 4Kbytes and the IVSEL bit in the GICR
Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and
Interrupt Vector Addresses is:

Address Labels Code Comments

$000 RESET: 1di rl6,high(RAMEND); Main program start

$001 out SPH,rlé6 ; Set Stack Pointer to top of RAM
$002 1di r16,low (RAMEND)

$003 out SPL,rlé

$004 sei ; Enable interrupts

$005 <instr> xxx

.org $3802

$3802 jmp EXT INTO ; IRQO Handler

$3804 jmp EXT INT1 ; IRQ1 Handler

$3828 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 4Kbytes, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $002

$002 jmp EXT INTO ; IRQO Handler

$004 jmp EXT INT1 ; IRQ1 Handler

$028 jmp SPM_RDY ; Store Program Memory Ready Handler
.org $3800

$3800 RESET: 1di r16,high(RAMEND); Main program start

$3801 out SPH,rlé6 ; Set Stack Pointer to top of RAM
$3802 1di rl6,low (RAMEND)

$3803 out SPL,rlé6

$3804 sei ; Enable interrupts

$3805 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 4Kbytes and the IVSEL bit in the GICR
Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and
Interrupt Vector Addresses is:

Address Labels Code Comments

.org $3800

$3800 jmp RESET ; Reset handler

$3802 jmp EXT INTO ; IRQO Handler

$3804 jmp EXT INT1 ; IRQ1 Handler

$3828 jmp SPM RDY ; Store Program Memory Ready Handler

I

$382A RESET: 1di rl6,high(RAMEND); Main program start

$382B out SPH,rlé6 ; Set Stack Pointer to top of RAM
$382C 1di r16,low (RAMEND)
$382D out SPL,rlé

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 53

1211

12.2

12.21

ATmega32A

$S382E sei ; Enable interrupts

S382F <instr> xxx

Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

Register Description

GICR - General Interrupt Control Register

Bit 7 6 5 4 3 2 1 0

| NT1 | NTO | INT2 | - | - - IVSEL IVCE | GICR
Read/Write R/W R/W RIW R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory. When this
bit is set (one), the interrupt vectors are moved to the beginning of the Boot Loader section of the Flash. The actual
address of the start of the Boot Flash section is determined by the BOOTSZ fuses. Refer to “Boot Loader Support
— Read-While-Write Self-Programming” on page 243 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.
Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE

is set, and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, inter-
rupts remain disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are dis-
abled while executing from the Application section. If Interrupt Vectors are placed in the Application section and Boot
Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to “Boot
Loader Support — Read-While-Write Self-Programming” on page 243 for details on Boot Lock bits.

¢ Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four
cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the
IVSEL description above. See Code Example below.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 54

ATmega32A

Assembly Code Example

Move_interrupts:
; Enable change of interrupt vectors
1di rlé6, (1<<IVCE)
out GICR, rlé6
; Move interrupts to boot Flash section
1di rlé6, (1<<IVSEL)
out GICR, rlé6

ret

C Code Example

void Move interrupts (void)
/* Enable change of interrupt vectors */
GICR = (1<<IVCE) ;
/* Move interrupts to boot Flash section */

GICR = (1<<IVSEL);

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 55

ATmega32A

13. 1/0 Ports

13.1

Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that
the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the
SBI and CBI instructions. The same applies when changing drive value (if configured as output) or enabling/dis-
abling of pull-up resistors (if configured as input). Each output buffer has symmetrical drive characteristics with
both high sink and source capability. The pin driver is strong enough to drive LED displays directly. All port pins
have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection
diodes to both V- and Ground as indicated in Figure 13-1. Refer to “Electrical Characteristics” on page 286 for a
complete list of parameters.

Figure 13-1. 1/0 Pin Equivalent Schematic

pu

Pxn 4

Logic

See
"General Digital 1/0" for
Details

C : I
All registers and bit references in this section are written in general form. A lower case “x” represents the number-
ing letter for the port, and a lower case “n” represents the bit number. However, when using the register or bit
defines in a program, the precise form must be used, that is, PORTB3 for bit no. 3 in Port B, here documented gen-
erally as PORTxn. The physical /0O Registers and bit locations are listed in “Register Description” on page 70.

Three 1/0 memory address locations are allocated for each port, one each for the Data Register —- PORTx, Data
Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins 1/O location is read only, while the
Data Register and the Data Direction Register are read/write. In addition, the Pull-up Disable — PUD bit in SFIOR
disables the pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital 1/0” on page 57. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function inter-
feres with the port pin is described in “Alternate Port Functions” on page 61. Refer to the individual module sections
for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port
as general digital 1/0.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 56

13.2

13.2.1

ATmega32A

Ports as General Digital /0
The ports are bi-directional 1/0 ports with optional internal pull-ups. Figure 13-2 shows a functional description of
one I/O-port pin, here generically called Pxn.

Figure 13-2. General Digital /0(")

b PUD
il‘ /7
Q D :
DDxn
3. 4
= L o
RESET
RDx
[: (9p]
2
/‘ dl
3 1 Q D
i \I PORTxn h <
I WPx o
RESET
p———— SLEEP : RRx
SYNCHRONIZER
| —————— RPx
’ 'J\ D a}——-D Q _|_| ; »
= | PINxn |
| ’7 L q "> [|
|_ _____ f clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPX: WRITE PORTX
clk 1/0 CLOCK RRx: READ PORTX REGISTER

vor RPX: READ PORTXx PIN

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;, SLEEP, and PUD are common
to all ports.

Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register Description” on
page 70, the DDxn bits are accessed at the DDRXx I/O address, the PORTxn bits at the PORTx I/O address, and
the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured
as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch
the pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The
port pins are tri-stated when a reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If
PORTxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an inter-
mediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must
occur. Normally, the pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the
difference between a strong high driver and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can
be set to disable all pull-ups in all ports.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 57

13.2.2

ATmega32A

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-
state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

Table 13-1. Port Pin Configurations

DDxn PORTxn (in |:S’ll‘-":zi)R) 1/0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As
shown in Figure 13-2, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to
avoid metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a
delay. Figure 13-3 shows a timing diagram of the synchronization when reading an externally applied pin value.
The maximum and minimum propagation delays are denoted t,4 nax @and tog min respectively.

Figure 13-3. Synchronization when Reading an Externally Applied Pin Value

SYSTEM CLK]]]
INSTRUCTIONS X wx X xkx X innz e X

SYNC LATCH % %
PINxn
17 | 0x00 | | X __oxFF
tpd, max ‘

“A
AN A

§ tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when
the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC
LATCH? signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn Register at
the succeeding positive clock edge. As indicated by the two arrows t,4 . and tyq min, @ single signal transition on
the pin will be delayed between 2 and 1% system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 13-4.
The out instruction sets the “SYNC LATCH?” signal at the positive edge of the clock. In this case, the delay t,q
through the synchronizer is one system clock period.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 58

ATmega32A

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

r16 i OXFF

INSTRUCTIONSD(out PORTx, 16 X nop X innz,pine X
SYNC LATCH |
PINxn |
r7 0x00 X oxFF

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from
4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as pre-
viously discussed, a nop instruction is included to be able to read back the value recently assigned to some of the
pins.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 59

13.23

13.24

ATmega32A

Assembly Code Example!")

; Define pull-ups and set outputs high

; Define directions for port pins

1di 1rl16, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PB0)

1di 117, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDRBO)
out PORTB,rlé6

out DDRB,rl7

; Insert nop for synchronization

nop

; Read port pins

in rlé6, PINB

C Code Example!"

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDRBO) ;
/* Insert nop for synchronization*/

_NOP () ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins 0,
1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as strong
high drivers.

Digital Input Enable and Sleep Modes
As shown in Figure 13-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The
signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down mode, Power-save mode,
Standby mode, and Extended Standby mode to avoid high power consumption if some input signals are left float-
ing, or have an analog signal level close to V /2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt Request is not
enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as
described in “Alternate Port Functions” on page 61.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as “Interrupt on Rising
Edge, Falling Edge, or Any Logic Change on Pin” while the External Interrupt is not enabled, the corresponding
External Interrupt Flag will be set when resuming from the above mentioned sleep modes, as the clamping in these
sleep modes produces the requested logic change.

Unconnected pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of
the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 60

13.3

ATmega32A

reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode and Idle
mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pullup. In this case, the
pullup will be disabled during reset. If low power consumption during reset is important, it is recommended to use
an external pullup or pulldown. Connecting unused pins directly to V; or GND is not recommended, since this
may cause excessive currents if the pin is accidentally configured as an output.

Alternate Port Functions

Most port pins have alternate functions in addition to being General Digital I/Os. Figure 13-5 shows how the port
pin control signals from the simplified Figure 13-2 can be overridden by alternate functions. The overriding signals
may not be present in all port pins, but the figure serves as a generic description applicable to all port pins in the
AVR microcontroller family.

Figure 13-5. Alternate Port Functions'"

PUOExn A

PUQOVxn
PUD
DDOExn
> DDOVxn
3
Q D
DDxn
T,
PVOExn
PVOVxn
(D)
‘ B
Pxn
~
N <
£
DIEOExn [a)
o<} DIEOVNKN
1 SLEEP
SYNCHRONIZER
[
ﬁ r’/
= » Dixn
@ AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WPx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE clk: 1/O CLOCK
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE Dixn: DIGITAL INPUT PIN n ON PORTx
SLEEP: SLEEP CONTROL AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,5, SLEEP, and PUD are common
to all ports. All other signals are unique for each pin.

Table 13-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 13-5 are not

shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate

function.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 61

ATmega32A

Table 13-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description
PUOE Pull-up Override If this signal is set, the pull-up enable is controlled by the
Enable PUOQV signal. If this signal is cleared, the pull-up is enabled
when {DDxn, PORTxn, PUD} = 0b010.
PUQV Pull-up Override Value | If PUOE is set, the pull-up is enabled/disabled when PUOV

is set/cleared, regardless of the setting of the DDxn,
PORTxn, and PUD Register bits.

DDOE Data Direction If this signal is set, the Output Driver Enable is controlled by
Override Enable the DDOV signal. If this signal is cleared, the Output driver
is enabled by the DDxn Register bit.
DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled when
Override Value DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.
PVOE Port Value Override If this signal is set and the Output Driver is enabled, the port
Enable value is controlled by the PVOV signal. If PVOE is cleared,

and the Output Driver is enabled, the port Value is
controlled by the PORTxn Register bit.

PVOV Port Value Override If PVOE is set, the port value is set to PVOV, regardless of
Value the setting of the PORTxn Register bit.
DIEOCE Digital Input Enable If this bit is set, the Digital Input Enable is controlled by the
Override Enable DIEQV signal. If this signal is cleared, the Digital Input
Enable is determined by MCU-state (Normal Mode, sleep
modes).
DIEQV Digital Input Enable If DIEOE is set, the Digital Input is enabled/disabled when
Override Value DIEOQV is set/cleared, regardless of the MCU state (Normal

Mode, sleep modes).

Dl Digital Input This is the Digital Input to alternate functions. In the figure,
the signal is connected to the output of the schmitt trigger
but before the synchronizer. Unless the Digital Input is used
as a clock source, the module with the alternate function will
use its own synchronizer.

AlIO Analog Input/ output This is the Analog Input/output to/from alternate functions.
The signal is connected directly to the pad, and can be used
bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to
the alternate function. Refer to the alternate function description for further details.

13.3.1 Alternate Functions of Port A
Port A has an alternate function as analog input for the ADC as shown in Table 13-3. If some Port A pins are con-
figured as outputs, it is essential that these do not switch when a conversion is in progress. This might corrupt the
result of the conversion.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 62

ATmega32A

Table 13-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 ADC7 (ADC input channel 7)
PAG6 ADCG6 (ADC input channel 6)
PA5 ADCS5 (ADC input channel 5)
PA4 ADC4 (ADC input channel 4)
PA3 ADC3 (ADC input channel 3)
PA2 ADC2 (ADC input channel 2)
PA1 ADC1 (ADC input channel 1)
PAO ADCO (ADC input channel 0)

Table 13-4 and Table 13-5 relate the alternate functions of Port A to the overriding signals shown in Figure 13-5 on
page 61.

Table 13-4. Overriding Signals for Alternate Functions in PA7:PA4

Signal Name PA7/ADC7 PA6/ADC6 PAS5/ADCS PA4/ADC4
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlIO ADC7 INPUT ADCG6 INPUT ADCS5 INPUT ADC4 INPUT

Table 13-5. Overriding Signals for Alternate Functions in PA3:PA0

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PAO/ADCO
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 63

ATmega32A

13.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 13-6.

Table 13-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB4 SS (SPI Slave Select Input)

PB3 AIN1 (Analog Comparator Negative Input)
OCO (Timer/Counter0 Output Compare Match Output)

PB2 AINO (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PBO TO (Timer/Counter0 External Counter Input)

XCK (USART External Clock Input/Output)

The alternate pin configuration is as follows:

e SCK-PortB, Bit7

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave, this pin is configured
as an input regardless of the setting of DDB7. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB7. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTBY bit.

e MISO - Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master, this pin is config-
ured as an input regardless of the setting of DDB6. When the SPI is enabled as a Slave, the data direction of this
pin is controlled by DDB6. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTBS6 bit.

e MOSI - Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave, this pin is configured
as an input regardless of the setting of DDB5. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTBS bit.

« SS-PortB, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input regardless of the set-
ting of DDB4. As a Slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a Master, the
data direction of this pin is controlled by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still
be controlled by the PORTB4 bit.

* AIN1/0OCO - Port B, Bit 3
AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the analog comparator.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 64

ATmega32A

OCO0, Output Compare Match output: The PB3 pin can serve as an external output for the Timer/Counter0 Com-
pare Match. The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function. The OCO pin is
also the output pin for the PWM mode timer function.

¢ AINO/INT2 — Port B, Bit 2
AINO, Analog Comparator Positive input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt source to the MCU.

e T1-Port B, Bit 1
T1, Timer/Counter1 Counter Source.

e TO/XCK - Port B, Bit 0
TO, Timer/CounterO Counter Source.

XCK, USART External Clock. The Data Direction Register (DDBO) controls whether the clock is output (DDBO set)
or input (DDBO cleared). The XCK pin is active only when the USART operates in Synchronous mode.

Table 13-7 and Table 13-8 relate the alternate functions of Port B to the overriding signals shown in Figure 13-5 on
page 61. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is divided into SPI
MSTR OUTPUT and SPI SLAVE INPUT.

Table 13-7. Overriding Signals for Alternate Functions in PB7:PB4
Signal _
Name | PB7/SCK PB6/MISO PB5/MOSI PB4/SS
PUOE | SPE-MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV | PORTB7+PUD | PORTB6 « PUD PORTBS5 « PUD PORTB4 « PUD
DDOE | SPE+MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV | 0 0 0 0
PVOE | SPE-«MSTR SPE « MSTR SPE « MSTR 0
PVOV | SCKOUTPUT SPI SLAVE OUTPUT SPIMSTR OUTPUT 0
DIECE | 0 0 0 0
DIEOV | 0 0 0 0
DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT SPISS
AIO - - - -

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 65

ATmega32A

Table 13-8. Overriding Signals for Alternate Functions in PB3:PB0

ﬁfr::l PB3/OCO0/AIN1 PB2/INT2/AINO PB1/T1 PBO/TO/XCK
PUCE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OCO ENABLE 0 0 UMSEL
PVOV 0OCo 0 0 XCK OUTPUT
DIEOCE 0 INT2 ENABLE 0 0

DIEOV 0 1 0 0

DI - INT2 INPUT T1 INPUT XCK INPUT/TO INPUT
AIO AIN1T INPUT AINO INPUT - -

13.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 13-9. If the JTAG interface is enabled, the pull-up resis-
tors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

Table 13-9. Port C Pins Alternate Functions

Port Pin Alternate Function
PC7 TOSC2 (Timer Oscillator Pin 2)
PC6 TOSC1 (Timer Oscillator Pin 1)
PC5 TDI (JTAG Test Data In)
PC4 TDO (JTAG Test Data Out)
PC3 TMS (JTAG Test Mode Select)
PC2 TCK (JTAG Test Clock)
PC1 SDA (Two-wire Serial Bus Data Input/Output Line)
PCO SCL (Two-wire Serial Bus Clock Line)

The alternate pin configuration is as follows:

¢ TOSC2-PortC, Bit7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of
Timer/Counter2, pin PC7 is disconnected from the port, and becomes the inverting output of the Oscillator ampli-
fier. In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

¢ TOSC1-PortC, Bit 6

TOSCH1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of
Timer/Counter2, pin PC6 is disconnected from the port, and becomes the input of the inverting Oscillator amplifier.
In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

e TDI-Port C, Bit 5
TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Register (scan chains).
When the JTAG interface is enabled, this pin can not be used as an I/O pin.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 66

ATmega32A

« TDO - Port C, Bit 4
TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When the JTAG interface
is enabled, this pin can not be used as an I/O pin.

The TDO pin is tri-stated unless TAP states that shifts out data are entered.

e TMS - Port C, Bit 3
TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state machine. When the
JTAG interface is enabled, this pin can not be used as an 1/O pin.

¢ TCK - Port C, Bit 2
TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is enabled, this pin can
not be used as an I/O pin.

* SDA - Port C, Bit 1

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the Two-wire Serial Inter-
face, pin PC1 is disconnected from the port and becomes the Serial Data 1/O pin for the Two-wire Serial Interface.
In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the pin
is driven by an open drain driver with slew-rate limitation. When this pin is used by the Two-wire Serial Interface,
the pull-up can still be controlled by the PORTC1 bit.

e SCL-PortC,Bit0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the Two-wire Serial
Interface, pin PCO is disconnected from the port and becomes the Serial Clock 1/O pin for the Two-wire Serial Inter-
face. In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and
the pin is driven by an open drain driver with slew-rate limitation. When this pin is used by the Two-wire Serial Inter-
face, the pull-up can still be controlled by the PORTCO bit.

Table 13-10 and Table 13-11 relate the alternate functions of Port C to the overriding signals shown in Figure 13-5
on page 61.

Table 13-10. Overriding Signals for Alternate Functions in PC7:PC4

ﬁﬁ::l PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO
PUOE AS2 AS2 JTAGEN JTAGEN
PUOV 0 0 1 0
DDOE AS2 AS2 JTAGEN JTAGEN
DDOV 0 0 0 SHIFT_IR + SHIFT_DR
PVOE 0 0 0 JTAGEN
PVOV 0 0 0 TDO
DIEOE AS2 AS2 JTAGEN JTAGEN
DIEQV 0 0 0 0
DI - - - -
AlIO T/C2 OSC OUTPUT T/C2 OSC INPUT TDI -
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 67

ATmega32A

Table 13-11. Overriding Signals for Alternate Functions in PC3:PC0(")
Signal
Name PC3/TMS PC2/TCK PC1/SDA PCO/SCL
PUOE JTAGEN JTAGEN TWEN TWEN
PUOV 1 1 PORTC1 + PUD PORTCO + PUD
DDOE JTAGEN JTAGEN TWEN TWEN
DDOV 0 0 SDA_OUT SCL_OUT
PVOE 0 0 TWEN TWEN
PVOV 0 0 0 0
DIEOE JTAGEN JTAGEN 0 0
DIEQV 0 0 0 0
DI - - - -
AIO TMS TCK SDA INPUT SCL INPUT

Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output pins PCO and PC1. This is
not shown in the figure. In addition, spike filters are connected between the AlO outputs shown in the port figure

and the digital logic of the TWI module.

13.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-12.

Table 13-12. Port D Pins Alternate Functions

Port Pin Alternate Function
PD7 OC2 (Timer/Counter2 Output Compare Match Output)
PD6 ICP1 (Timer/Counter1 Input Capture Pin)
PD5 OC1A (Timer/Counter1 Output Compare A Match Output)
PD4 OC1B (Timer/Counter1 Output Compare B Match Output)
PD3 INT1 (External Interrupt 1 Input)
PD2 INTO (External Interrupt O Input)
PD1 TXD (USART Output Pin)
PDO RXD (USART Input Pin)

The alternate pin configuration is as follows:

¢ OC2-PortD,Bit7
OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an external output for the
Timer/Counter2 Output Compare. The pin has to be configured as an output (DDD7 set (one)) to serve this func-
tion. The OC2 pin is also the output pin for the PWM mode timer function.

¢ ICP1-Port D, Bit 6
ICP1 — Input Capture Pin: The PD6 pin can act as an Input Capture pin for Timer/Counter1.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 68

ATmega32A

¢ OC1A-PortD, Bit5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the Timer/Counter1 Out-
put Compare A. The pin has to be configured as an output (DDD5 set (one)) to serve this function. The OC1A pin
is also the output pin for the PWM mode timer function.

* OC1B - Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output for the Timer/Counter1 Out-
put Compare B. The pin has to be configured as an output (DDD4 set (one)) to serve this function. The OC1B pin
is also the output pin for the PWM mode timer function.

* INT1 -PortD, Bit 3
INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt source.

¢ INTO - Port D, Bit 2
INTO, External Interrupt Source 0: The PD2 pin can serve as an external interrupt source.

e TXD - Port D, Bit 1
TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled, this pin is config-
ured as an output regardless of the value of DDD1.

¢ RXD - PortD, Bit0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this pin is configured as
an input regardless of the value of DDD0. When the USART forces this pin to be an input, the pull-up can still be
controlled by the PORTDO bit.

Table 13-13 and Table 13-14 relate the alternate functions of Port D to the overriding signals shown in Figure 13-5
on page 61.

Table 13-13. Overriding Signals for Alternate Functions PD7:PD4

Signal Name PD7/0C2 PD6/ICP1 PD5/0OC1A PD4/0C1B
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE
PVOV 0C2 0 OC1A OC1B
DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - ICP1 INPUT - -

AlIO - - - -

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 69

13.4

13.4.1

13.4.2

13.4.3

13.4.4

ATmega32A

Table 13-14. Overriding Signals for Alternate Functions in PD3:PD0

Signal Name PD3/INT1 PD2/INTO PD1/TXD PDO/RXD
PUOCE 0 0 TXEN RXEN
PUOV 0 0 0 PORTDO « PUD
DDOE 0 0 TXEN RXEN
DDOV 0 0 1 0

PVOE 0 0 TXEN 0

PVOV 0 0 TXD 0

DIEOCE INT1 ENABLE INTO ENABLE 0 0

DIEQV 1 1 0 0

DI INT1 INPUT INTO INPUT - RXD

AIO - - - -

Register Description

SFIOR - Special Function I/O Register

Bit 7 6 5 4 3 2 1 0

| Apts2 | ADTs1 | ADTso | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 2 — PUD: Pull-up disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn Registers
are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Configuring the Pin” on page 57 for more
details about this feature.

PORTA - Port A Data Register

Bit 7 6 5 4 3 2 1 0

I PORTA7 | PORTA6 | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/IW R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

DDRA - Port A Data Direction Register

Bit 7 6 5 4 3 2 1 0

| poAa7 | DpAe | DDAs | DDA4 DDA3 DDA2 DDA1 DDA0 | DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINA — Port A Input Pins Address

Bit 7 6 5 4 3 2 1 0

| PINA7 | PINA6 | PINA5S | PINA4 PINA3 PINA2 PINA1 PINAO | PINA
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 70

13.4.5

13.4.6

13.4.7

13.4.8

13.4.9

13.4.10

13.4.11

13.4.12

ATmega32A

PORTB - Port B Data Register

Bit 7 6 5 4 3 2 1 0

I PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/IW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

DDRB - Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0

| poB7 | DpbB6e | DDB5 | DDB4 DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINB - Port B Input Pins Address

Bit 7 6 5 4 3 2 1 0

| PNB7 | PINB6 | PINB5 | PINB4 PINB3 PINB2 PINB1 PINBO]| PINB
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

PORTC - Port C Data Register

Bit 7 6 5 4 3 2 1 0

I PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/IW R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

DDRC - Port C Data Direction Register

Bit 7 6 5 4 3 2 1 0
| DDC7 | DDC6 | DDC5 | DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
PINC - Port C Input Pins Address
Bit 7 6 5 4 3 2 1 0
| PiNc7 | PINC6 | PINC5 | PINC4 PINC3 PINC2 PINC1 PINCO]| PINC
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
PORTD - Port D Data Register
Bit 7 6 5 4 3 2 1 0
| PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTDO | PORTD
Read/Write R/W R/W R/W R/W RIW RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0
DDRD - Port D Data Direction Register
Bit 7 6 5 4 3 2 1 0
| DDD7 | DDD6 | DDD5 | DDD4 DDD3 DDD2 DDD1 DDDO | DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 71

ATmega32A

13.4.13 PIND - Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

| PpND7 | PINDE | PIND5 | PIND4 PIND3 PIND2 PIND1 PINDO | PIND
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 72

ATmega32A

14. External Interrupts

14.1

14.1.1

The External Interrupts are triggered by the INTO, INT1, and INT2 pins. Observe that, if enabled, the interrupts will
trigger even if the INTO:2 pins are configured as outputs. This feature provides a way of generating a software
interrupt. The external interrupts can be triggered by a falling or rising edge or a low level (INT2 is only an edge trig-
gered interrupt). This is set up as indicated in the specification for the MCU Control Register - MCUCR — and MCU
Control and Status Register - MCUCSR. When the external interrupt is enabled and is configured as level trig-
gered (only INTO/INT1), the interrupt will trigger as long as the pin is held low. Note that recognition of falling or
rising edge interrupts on INTO and INT1 requires the presence of an 1/O clock, described in “Clock Systems and
their Distribution” on page 31. Low level interrupts on INTO/INT1 and the edge interrupt on INT2 are detected asyn-
chronously. This implies that these interrupts can be used for waking the part also from sleep modes other than
Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be held
for some time to wake up the MCU. This makes the MCU less sensitive to noise. The changed level is sampled
twice by the Watchdog Oscillator clock. The period of the Watchdog Oscillator is 1 ys (nominal) at 5.0V and 25°C.
The frequency of the Watchdog Oscillator is voltage dependent as shown in “Electrical Characteristics” on page
286. The MCU will wake up if the input has the required level during this sampling or if it is held until the end of the
start-up time. The start-up time is defined by the SUT fuses as described in “System Clock and Clock Options” on
page 31. If the level is sampled twice by the Watchdog Oscillator clock but disappears before the end of the start-
up time, the MCU will still wake up, but no interrupt will be generated. The required level must be held long enough
for the MCU to complete the wake up to trigger the level interrupt.

Register Description

MCUCR - MCU Control Register
The MCU Control Register contains control bits for interrupt sense control and general MCU functions.

Bit 7 6 5 4 3 2 1 0

I s | sm2 | swmt | smo | Isci1 | Isc10 | Iscot | 1sCo0 | MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 3,2 -1SC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the corresponding interrupt
mask in the GICR are set. The level and edges on the external INT1 pin that activate the interrupt are defined in
Table 14-1. The value on the INT1 pin is sampled before detecting edges. If edge or toggle interrupt is selected,
pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not ensured to generate
an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently execut-
ing instruction to generate an interrupt.

Table 14-1. Interrupt 1 Sense Control

ISC11 ISC10 Description
0 0 The low level of INT1 generates an interrupt request.
0 1 Any logical change on INT1 generates an interrupt request.
1 0 The falling edge of INT1 generates an interrupt request.
1 1 The rising edge of INT1 generates an interrupt request.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 73

14.1.2

14.1.3

ATmega32A

e Bit1,0-1SCO01, ISCO00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt O is activated by the external pin INTO if the SREG I-flag and the corresponding interrupt
mask are set. The level and edges on the external INTO pin that activate the interrupt are defined in Table 14-2.
The value on the INTO pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last
longer than one clock period will generate an interrupt. Shorter pulses are not ensured to generate an interrupt. If
low level interrupt is selected, the low level must be held until the completion of the currently executing instruction
to generate an interrupt.

Table 14-2. Interrupt 0 Sense Control

1ISCO01 ISC00 Description
0 0 The low level of INTO generates an interrupt request.
0 1 Any logical change on INTO generates an interrupt request.
1 0 The falling edge of INTO generates an interrupt request.
1 1 The rising edge of INTO generates an interrupt request.

MCUCSR - MCU Control and Status Register

Bit 7 6 5 4 3 2 1 0

| Jo | isc2 | = | JTRF | WDRF BORF EXTRF PORF | McucsrR
Read/Write R/W RIW R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

¢ Bit 6 — ISC2: Interrupt Sense Control 2

The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and the correspond-
ing interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on INT2 activates the interrupt. If ISC2
is written to one, a rising edge on INT2 activates the interrupt. Edges on INT2 are registered asynchronously.
Pulses on INT2 wider than the minimum pulse width given in Table 14-3 will generate an interrupt. Shorter pulses
are not ensured to generate an interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it is rec-
ommended to first disable INT2 by clearing its Interrupt Enable bit in the GICR Register. Then, the ISC2 bit can be
changed. Finally, the INT2 Interrupt Flag should be cleared by writing a logical one to its Interrupt Flag bit (INTF2)
in the GIFR Register before the interrupt is re-enabled.

Table 14-3. Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition Min Typ Max Units

Minimum pulse width for asynchronous

t . 50 ns
INT external interrupt
GICR - General Interrupt Control Register
Bit 7 6 5 4 3 2 1 0
| Nt | NTO | NT2 | - | - IVSEL IVCE | GICR
Read/Write R/W RIW RIW R R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is
enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU General Control Register (MCUCR)
define whether the External Interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activ-
ity on the pin will cause an interrupt request even if INT1 is configured as an output. The corresponding interrupt of
External Interrupt Request 1 is executed from the INT1 interrupt Vector.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 74

1414

ATmega32A

¢ Bit 6 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is
enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU General Control Register (MCUCR)
define whether the External Interrupt is activated on rising and/or falling edge of the INTO pin or level sensed. Activ-
ity on the pin will cause an interrupt request even if INTO is configured as an output. The corresponding interrupt of
External Interrupt Request 0 is executed from the INTO interrupt vector.

¢ Bit 5 - INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is
enabled. The Interrupt Sense Control2 bit (ISC2) in the MCU Control and Status Register (MCUCSR) defines
whether the External Interrupt is activated on rising or falling edge of the INT2 pin. Activity on the pin will cause an
interrupt request even if INT2 is configured as an output. The corresponding interrupt of External Interrupt Request
2 is executed from the INT2 Interrupt Vector.

GIFR - General Interrupt Flag Register
Bit 7 6 5 4 3 2 1 0
| NTF1 | INTFO | INTF2 | - - - - -] cIFR
Read/Write R/W RIW RIW R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in
SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
This flag is always cleared when INT1 is configured as a level interrupt.

¢ Bit 6 — INTFO0: External Interrupt Flag 0

When an edge or logic change on the INTO pin triggers an interrupt request, INTFO becomes set (one). If the I-bit in
SREG and the INTO bit in GICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
This flag is always cleared when INTO is configured as a level interrupt.

¢ Bit 5 - INTF2: External Interrupt Flag 2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one). If the I-bit in SREG and the
INT2 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. Note that when
entering some sleep modes with the INT2 interrupt disabled, the input buffer on this pin will be disabled. This may
cause a logic change in internal signals which will set the INTF2 Flag. Refer to “Digital Input Enable and Sleep
Modes” on page 60 for more information.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 75

ATmega32A

15. 8-bit Timer/Counter0 with PWM

15.1

15.2

15.2.1

Features
* Single Compare Unit Counter

* Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Frequency Generator
* External Event Counter
* 10-bit Clock Prescaler

* Overflow and Compare Match Interrupt Sources (TOV0 and OCFO0)

Overview

Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block diagram
of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual placement of I/O pins, refer to “Pinout
ATmega32A” on page 10. CPU accessible I/O Registers, including 1/O bits and I/O pins, are shown in bold. The
device-specific /0 Register and bit locations are listed in the “Register Description” on page 86.

Figure 15-1. 8-bit Timer/Counter Block Diagram

< | TCCRn
Y
count . TOVn
clear G Lo " (Int.Req.)
ontrol Logic
direction 9 clk, Clock Select
Edge
y Detector [Tn
BOTTOM TOP
' ' A _X (From Prescaler)
C:I)) Timer/Counter A
M TCNTn |
< "+ [=0] [=oxFF »OCn
<D($ (Int.Req.)
Y
_ Waveform »| ocn
I Generation
A
<->| OCRn

Registers

The Timer/Counter (TCNTO) and Output Compare Register (OCRO) are 8-bit registers. Interrupt request (abbrevi-
ated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are
individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure
since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO pin. The
Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement)

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 76

ATmega32A

its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clk+g).

The double buffered Output Compare Register (OCRO0) is compared with the Timer/Counter value at all times. The
result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the Output Compare Pin (OCO). Refer to “Output Compare Unit” on page 78. for details. The compare match event
will also set the Compare Flag (OCFO0) which can be used to generate an output compare interrupt request.

15.2.2 Definitions
Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 0. However, when using the register or bit defines in a program, the precise
form must be used, that is, TCNTO for accessing Timer/CounterQ counter value and so on.

The definitions in Table 15-1 are also used extensively throughout the document.

Table 15-1. Definitions

BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCRO Register. The assignment is dependent
on the mode of operation.

15.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the
clock select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter Control Regis-
ter (TCCRO). For details on clock sources and prescaler, refer to “Timer/CounterO and Timer/Counter1 Prescalers”
on page 90.

15.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 15-2 shows a
block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

___, Tovn
< DATA BUS > (Int. Req.)
t Clock Select
n
TCNTn - CC('):"": Control Logic |« Yy Dgg%?m) "
_ direction
(From Prescaler)
BOTTOMT TTOP
Signal description (internal signals):
count Increment or decrement TCNTO by 1.
direction Select between increment and decrement.
clear Clear TCNTO (set all bits to zero).
clky, Timer/Counter clock, referred to as clky in the following.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 77

15.5

ATmega32A

TOP Signalize that TCNTO has reached maximum value.
BOTTOM Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock
(clktg). clkyg can be generated from an external or internal clock source, selected by the Clock Select bits
(CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be
accessed by the CPU, regardless of whether clk, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in the Timer/Counter
Control Register (TCCRO). There are close connections between how the counter behaves (counts) and how
waveforms are generated on the Output Compare output OCO. For more details about advanced counting
sequences and waveform generation, refer to “Modes of Operation” on page 80.

The Timer/Counter Overflow (TOVO0) Flag is set according to the mode of operation selected by the WGMO01:0 bits.
TOVO0 can be used for generating a CPU interrupt.

Output Compare Unit

The 8-bit comparator continuously compares TCNTO with the Output Compare Register (OCRO0). Whenever
TCNTO equals OCRO, the comparator signals a match. A match will set the Output Compare Flag (OCFO) at the
next timer clock cycle. If enabled (OCIEO = 1 and Global Interrupt Flag in SREG is set), the Output Compare Flag
generates an output compare interrupt. The OCFO Flag is automatically cleared when the interrupt is executed.
Alternatively, the OCFO Flag can be cleared by software by writing a logical one to its 1/O bit location. The wave-
form generator uses the match signal to generate an output according to operating mode set by the WGMO01:0 bits
and Compare Output mode (COMO01:0) bits. The max and bottom signals are used by the waveform generator for
handling the special cases of the extreme values in some modes of operation (refer to “Modes of Operation” on
page 80).

Figure 15-3 shows a block diagram of the output compare unit.

Figure 15-3. Output Compare Unit, Block Diagram
DATA BUS

I = (8-bit Comparator) I

OCFn (Int.Req.)

top >

bottom] Waveform Generator

P

WGMn1:0 COMnN1:0

| OCn

FOCn >

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 78

15.5.1

15.5.2

15.5.3

15.6

ATmega32A

The OCRO Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the nor-
mal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering
synchronizes the update of the OCRO Compare Register to either top or bottom of the counting sequence. The
synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output
glitch-free.

The OCRO Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCRO0 Buffer Register, and if double buffering is disabled the CPU will access the OCRO
directly.

Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOCO) bit. Forcing compare match will not set the OCFO Flag or reload/clear the timer,
but the OCO pin will be updated as if a real compare match had occurred (the COMO[1:0] bits settings define
whether the OCO pin is set, cleared or toggled).

Compare Match Blocking by TCNTO Write
All CPU write operations to the TCNTO Register will block any compare match that occur in the next timer clock
cycle, even when the timer is stopped. This feature allows OCRO to be initialized to the same value as TCNTO with-
out triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit
Since writing TCNTO in any mode of operation will block all compare matches for one timer clock cycle, there are
risks involved when changing TCNTO when using the output compare unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNTO equals the OCRO value, the compare match will be
missed, resulting in incorrect waveform generation. Similarly, do not write the TCNTO value equal to BOTTOM
when the counter is downcounting.

The setup of the OCO should be performed before setting the Data Direction Register for the port pin to output. The
easiest way of setting the OCO value is to use the Force Output Compare (FOCO) strobe bits in Normal mode. The
OCO Register keeps its value even when changing between waveform generation modes.

Be aware that the COMO[1:0] bits are not double buffered together with the compare value. Changing the
COMO[1:0] bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COMO[1:0]) bits have two functions. The Waveform Generator uses the COMO0[1:0]
bits for defining the Output Compare (OCO) state at the next compare match. Also, the COMO[1:0] bits control the
OCO pin output source. Figure 15-4 shows a simplified schematic of the logic affected by the COMO[1:0] bit setting.
The I/0O Registers, 1/O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general 1/0 port Con-
trol Registers (DDR and PORT) that are affected by the COMO[1:0] bits are shown. When referring to the OCO0
state, the reference is for the internal OCO Register, not the OCO pin. If a System Reset occur, the OCO Register is
reset to “0”.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 79

15.6.1

15.7

15.7.1

ATmega32A

Figure 15-4. Compare Match Output Unit, Schematic

— 1

COMn1
COMnO Waveform
D Q
FOCn Generator
o 1
OCn
OCn Pin
0
A
»D Q
(3 [
m PORT
<
=
= »D Q
\ DDR
clk,q

The general I/O port function is overridden by the Output Compare (OCO) from the Waveform Generator if either of
the COMO[1:0] bits are set. However, the OCO pin direction (input or output) is still controlled by the Data Direction
Register (DDR) for the port pin. The Data Direction Register bit for the OCO pin (DDR_OCO0) must be set as output
before the OCO value is visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the output compare pin logic allows initialization of the OCO state before the output is enabled. Note
that some COMO1:0 bit settings are reserved for certain modes of operation. Refer to “Register Description” on
page 86

Compare Output Mode and Waveform Generation
The Waveform Generator uses the COMO[1:0] bits differently in normal, CTC, and PWM modes. For all modes,
setting the COMO[1:0] = 0 tells the waveform generator that no action on the OCO Register is to be performed on
the next compare match. For compare output actions in the non-PWM modes refer to Table 15-3 on page 87. For
fast PWM mode, refer to Table 15-4 on page 87, and for phase correct PWM refer to Table 15-5 on page 87.

A change of the COMO[1:0] bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOCO strobe bits.

Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the
combination of the Waveform Generation mode (WGMO01:0) and Compare Output mode (COMO[1:0]) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COMOI1:0] bits control whether the PWM output generated should be inverted or not (inverted or non-inverted
PWM). For non-PWM modes the COMO[1:0] bits control whether the output should be set, cleared, or toggled at a
compare match. Refer to “Compare Match Output Unit” on page 79.

For detailed timing information refer to Figure 15-8, Figure 15-9, Figure 15-10 and Figure 15-11 in “Timer/Counter
Timing Diagrams” on page 84.

Normal Mode
The simplest mode of operation is the normal mode (WGMO01:0 = 0). In this mode the counting direction is always
up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-
bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 80

15.7.2

ATmega32A

Flag (TOVO) will be set in the same timer clock cycle as the TCNTO becomes zero. The TOVO Flag in this case
behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO Flag, the timer resolution can be increased by software. There are no special
cases to consider in the normal mode, a new counter value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to gen-
erate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCRO Register is used to manipulate the counter
resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTO) matches the OCRO. The
OCRO defines the top value for the counter, hence also its resolution. This mode allows greater control of the com-
pare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNTO) increases until a com-
pare match occurs between TCNTO and OCRO, and then counter (TCNTO) is cleared.

Figure 15-5. CTC Mode, Timing Diagram

OCn Interrupt Flag Set

TCNTn

OCn :
(Toggle)

Period e 1———sp——2—aafe 4]

An interrupt can be generated each time the counter value reaches the TOP value by using the OCFO Flag. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP
to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with
care since the CTC mode does not have the double buffering feature. If the new value written to OCRO is lower
than the current value of TCNTO, the counter will miss the compare match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can occur.

(COMn1:0=1)

For generating a waveform output in CTC mode, the OCO output can be set to toggle its logical level on each com-
pare match by setting the Compare Output mode bits to toggle mode (COMO01:0 = 1). The OCO value will not be
visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a
maximum frequency of foqg = fok 110/2 when OCRO is set to zero (0x00). The waveform frequency is defined by the
following equation: -

P Jeik_ 110
O0Cn— 2.N.(1+OCRn)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 81

15.7.3

ATmega32A

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter
counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCO) is cleared on the compare match between TCNTO and OCRO, and set at BOTTOM. In inverting
Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that
use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectifi-
cation, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-6. The
TCNTO value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent
compare matches between OCRO and TCNTO.

Figure 15-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update and
TOVn Interrupt Flag Set

v v L 20 2 B A v vy
TCNTn /
OoCn J (COMN1:0 = 2)
OCn m (COMN1:0 = 3)

Period }4—1 %4—2 —»‘4—3—»‘4—4—»‘4—5—»‘4—6—»‘4—7—»‘

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the interrupt is enabled, the
interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting the COMO01:0
bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMO01:0
to 3 (Table 15-4 on page 87). The actual OCO value will only be visible on the port pin if the data direction for the
port pin is set as output. The PWM waveform is generated by setting (or clearing) the OCO Register at the compare
match between OCRO and TCNTO, and clearing (or setting) the OCO Register at the timer clock cycle the counter
is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jak o
Tocarwm = 5 556

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCRO Register represents special cases when generating a PWM waveform output in
the fast PWM mode. If the OCRO is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 82

15.7.4

ATmega32A

clock cycle. Setting the OCRO equal to MAX will result in a constantly high or low output (depending on the polarity
of the output set by the COMO01:0 bits.)

Phase Correct PWM Mode

The phase correct PWM mode (WGMO[1:0] = 1) provides a high resolution phase correct PWM waveform genera-
tion option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from
BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OCO0) is cleared on the compare match between TCNTO and OCRO while upcounting, and set on the compare
match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode the coun-
ter is incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count
direction. The TCNTO value will be equal to MAX for one timer clock cycle. The timing diagram for the phase cor-
rect PWM mode is shown in Figure 15-7. The TCNTO value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small hor-
izontal line marks on the TCNTO slopes represent compare matches between OCRO0 and TCNTO.

Figure 15-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

TCNTn

OCn ‘LI v ‘ L (COMN1:0 = 2)
OCn ﬁ ﬁ F (COMN1:0 = 3)

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The Interrupt Flag can
be used to generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting the
COMO01:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COMO01:0 to 3 (see Table 15-5 on page 87). The actual OCO value will only be visible on the port pin if the data
direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OCO Regis-
ter at the compare match between OCRO and TCNTO when the counter increments, and setting (or clearing) the

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 83

15.8

ATmega32A

OCO Register at compare match between OCRO and TCNTO when the counter decrements. The PWM frequency
for the output when using phase correct PWM can be calculated by the following equation:

_ Jew_ o
Tocnpcrwm = ¥ 510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCRO is set equal to BOTTOM, the output will be continuously low and if set
equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will
have the opposite logic values.

At the very start of period 2 in Figure 15-7, OCn has a transition from high to low even though there is no Compare
Match. The point of this transition is to ensure symmetry around BOTTOM. There are two cases that give a transi-
tion without Compare Match:

* OCROA changes its value from MAX, like in Figure 15-7. When the OCROA value is MAX the OCn pin value is
the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the OCn
value at MAX must correspond to the result of an up-counting Compare Match.

* The timer starts counting from a value higher than the one in OCROA, and for that reason misses the Compare
Match and hence the OCn change that would have happened on the way up.

Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a clock enable signal
in the following figures. The figures include information on when Interrupt Flags are set. Figure 15-8 contains timing
data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling

clk

1/10

clky,
(clk, /1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 15-9 shows the same timing data, but with the prescaler enabled.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 84

ATmega32A

Figure 15-9. Timer/Counter Timing Diagram, with Prescaler (f, ;0/8)

clk, /0 H
(clk,/8) T

cIkTn

TCNTn

TOVn

[T
i

[T
1

:

[T

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 15-10 shows the setting of OCFO in all modes except CTC mode.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCFO0, with Prescaler (f ;0/8)

clko H

[

[T

[N

- I I | B |
(clk,/8)

TCNTn N OCRn - 1 OCRn OCRn + 1 OCRn +2
OCRn OCRn Value

OCFn

Figure 15-11 shows the setting of OCFO and the clearing of TCNTO in CTC mode.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 85

15.9

15.9.1

ATmega32A

Figure 15-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler
(feik_uo/8)

S AR AR
sl T q T

TCNTn
TOP - 1 TOP BOTTOM BOTTOM + 1
(CTC) (0] (0] OTTO OTTOM +
OCRn TOP
OCFn
Register Description
TCCRO - Timer/Counter Control Register
Bit 7 6 5 4 3 2 1 0
| FOCO | WGMO00 | como1 | COMO00 | WGMO01 CSs02 CSso01 CS00 | TCCRO
Read/Write w R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - FOCO: Force Output Compare

The FOCO bit is only active when the WGMOO bit specifies a non-PWM mode. However, for ensuring compatibility
with future devices, this bit must be set to zero when TCCRO is written when operating in PWM mode. When writ-
ing a logical one to the FOCO bit, an immediate compare match is forced on the Waveform Generation unit. The
OCO output is changed according to its COMO[1:0] bits setting. Note that the FOCO bit is implemented as a strobe.
Therefore it is the value present in the COMO[1:0] bits that determines the effect of the forced compare.

A FOCO strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCRO0 as TOP.

The FOCO bit is always read as zero.

¢ Bit 6, 3 - WGMO[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and
what type of Waveform Generation to be used. Modes of operation supported by the Timer/Counter unit are: Nor-
mal mode, Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes.
See Table 15-2 and “Modes of Operation” on page 80.

Table 15-2. Waveform Generation Mode Bit Description'"
WGMO1 WGMO00 | Timer/Counter Mode of Update of TOVO Flag
Mode (CTCoO) (PWMO0) | Operation TOP OCRO Set-on

0 0 0 Normal OxFF Immediate MAX

1 0 1 PWM, Phase Correct OxFF TOP BOTTOM

2 1 0 CTC OCRO Immediate MAX

3 1 1 Fast PWM OxFF BOTTOM MAX
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 86

ATmega32A

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions. However, the function-
ality and location of these bits are compatible with previous versions of the timer.

¢ Bit 5:4 — COMO0[1:0]: Compare Match Output Mode

These bits control the Output Compare pin (OCO0) behavior. If one or both of the COMO01:0 bits are set, the OCO
output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction
Register (DDR) bit corresponding to the OCO pin must be set in order to enable the output driver.

When OCQO is connected to the pin, the function of the COMO01:0 bits depends on the WGMO01:0 bit setting. Table
15-3 shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to a normal or CTC mode (non-PWM).

Table 15-3. Compare Output Mode, non-PWM Mode

COMo1 COMo0 Description
0 0 Normal port operation, OCO disconnected.
0 1 Toggle OCO on compare match
1 0 Clear OCO on compare match
1 1 Set OCO0 on compare match

Table 15-4 shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to fast PWM mode.

Table 15-4. Compare Output Mode, Fast PWM Mode!"

COMo1 COMOo0 Description
0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO0 on compare match, set OCO at BOTTOM,

(nin-inverting mode)

1 1 Set OCO0 on compare match, clear OCO at BOTTOM,
(inverting mode)

Note: 1. A special case occurs when OCRO equals TOP and COMO1 is set. In this case, the compare match is ignored, but
the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 82 for more details.

Table 15-5 shows the COMO[1:0] bit functionality when the WGMO01:0 bits are set to phase correct PWM mode.

Table 15-5. Compare Output Mode, Phase Correct PWM Mode!"
cOomMo1 COMO00 | Description

0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO on compare match when up-counting. Set OC0 on compare match

when downcounting.

1 1 Set OCO on compare match when up-counting. Clear OC0 on compare match
when downcounting.

Note: 1. A special case occurs when OCRO equals TOP and COMO01 is set. In this case, the compare match is ignored, but
the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 83 for more details.

e Bit 2:0 - CS02:0: Clock Select

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 87

15.9.2

15.9.3

15.9.4

ATmega32A

The three Clock Select bits select the clock source to be used by the Timer/Counter.
Table 15-6. Clock Select Bit Description

CS02 CS01 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk;,o/(No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clk;,o/256 (From prescaler)
1 0 1 clk;o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

TCNTO - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
| TCNTO[7:0] | TcnTo

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit
counter. Writing to the TCNTO Register blocks (removes) the compare match on the following timer clock. Modify-
ing the counter (TCNTO) while the counter is running, introduces a risk of missing a compare match between
TCNTO and the OCRO Register.

OCRO - Output Compare Register

Bit 7 6 5 4 3 2 1 0
| OCRO[7:0] | ocro

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the counter value
(TCNTO). A match can be used to generate an output compare interrupt, or to generate a waveform output on the
OCO pin.

TIMSK - Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
| ocie2 | ToIE2 | TICIE1 | OCIE1A | OCIE1B TOIE1 OCIEO TOIEO | TIMSK

Read/Write RIW R/W RIW R/W R/W R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 1 — OCIEO: Timer/Counter0 Output Compare Match Interrupt Enable

When the OCIEO bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0 Compare
Match interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/CounterQ occurs,
that is, when the OCFO bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 88

15.9.5

ATmega32A

¢ Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow
interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, that is, when
the TOVO bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

TIFR — Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocF2 | TOv2 | IcF1 | OCF1A | OCF1B TOV1 OCF0 Tovo | TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 1 - OCFO0: Output Compare Flag 0

The OCFO bit is set (one) when a compare match occurs between the Timer/Counter0 and the data in OCRO —
Output Compare Register0. OCFO is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, OCFO is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOQ
(Timer/Counter0 Compare Match Interrupt Enable), and OCFO are set (one), the Timer/Counter0 Compare Match
Interrupt is executed.

¢ Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, TOVO is cleared by writing a logic one to the flag.
When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Interrupt Enable), and TOVO are set (one), the
Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is set when Timer/Counter0
changes counting direction at $00.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 89

ATmega32A

16. Timer/Counter0 and Timer/Counter1 Prescalers

16.1

16.2

16.3

16.4

Overview

Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters can have different
prescaler settings. The description below applies to both Timer/Counter1 and Timer/Counter0.

Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fast-
est operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fc k 1,0)-
Alternatively, one of four taps from the prescaler can be used as a clock source. The prescaled clock has a fre-
quency of either o k ,0/8, oLk 1064, Toik 10/256, or fo k 10/ 1024.

Prescaler Reset

The prescaler is free running, that is, operates independently of the clock select logic of the Timer/Counter, and it is
shared by Timer/Counter1 and Timer/CounterQ. Since the prescaler is not affected by the Timer/Counter’s clock
select, the state of the prescaler will have implications for situations where a prescaled clock is used. One example
of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number
of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock
cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execution. However, care
must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset
will affect the prescaler period for all Timer/Counters it is connected to.

External Clock Source

An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock (clky/clkyg). The T1/TO pin
is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is
then passed through the edge detector. Figure 16-1 shows a functional equivalent block diagram of the T1/TO syn-
chronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock
(clk,o)- The latch is transparent in the high period of the internal system clock.

The edge detector generates one clky,/clkyq pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it
detects.

Figure 16-1. T1/T0 Pin Sampling

™ (P o Q > oo) g

Select Logic)

=T |
clk,

110
Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has
been applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least one system clock
cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 90

ATmega32A

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sam-
pling. The external clock must be ensured to have less than half the system clock frequency (fe,ici < fox 110/2) given
a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can
detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock
frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is recom-
mended that maximum frequency of an external clock source is less than f, ,,0/2.5.

An external clock source can not be prescaled.

Figure 16-2. Prescaler for Timer/Counter0 and Timer/Counter1("

clkyq > 10-BIT T/C PRESCALER
Clear
= Yo oN
X =
S > g =
(8] S >
PSR10 5
®

TO

CSs10 é\ CS00
cs11 P\ Cs01
CSs12 =\ Cs02

TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTERO CLOCK SOURCE

clkyy clkyg

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 16-1.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 91

ATmega32A

16.5 Register Description

16.5.1 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0

| Abts2 | AbDTs1 | ADTso | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 0 —- PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is written to one, the Timer/Counter1 and Timer/Counter0Q prescaler will be reset. The bit will be
cleared by hardware after the operation is performed. Writing a zero to this bit will have no effect. Note that
Timer/Counter1 and Timer/CounterQ share the same prescaler and a reset of this prescaler will affect both timers.
This bit will always be read as zero.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 92

ATmega32A

17. 16-bit Timer/Counter1

17.1 Features
* True 16-bit Design (that is, allows 16-bit PWM)
* Two Independent Output Compare Units
* Double Buffered Output Compare Registers
* One Input Capture Unit
* Input Capture Noise Canceler
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period
* Frequency Generator
* External Event Counter
* Four Independent Interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

17.2 Overview
The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation,
and signal timing measurement. Most register and bit references in this section are written in general form. A lower
case "n" replaces the Timer/Counter number, and a lower case "x" replaces the output compare unit. However,
when using the register or bit defines in a program, the precise form must be used, that is, TCNT1 for accessing
Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 17-1. For the actual placement of 1/O
pins, refer to Figure 1-1 on page 10. CPU accessible 1/0 Registers, including 1/0 bits and 1/O pins, are shown in
bold. The device-specific I/0O Register and bit locations are listed in the “Register Description” on page 112.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 93

17.21

ATmega32A

Figure 17-1. 16-bit Timer/Counter Block Diagram("

Count TOVn
F—»
Clear (Int.Req.)
Control Logic
Direction g clk Clock Select

Tn

Edge
[[Detector [Tn
TOP | BOTTOM
' vy / T\

(From Prescaler)

A Timer/Counter A
TCNTn | | Al =0]
OCnA
* I * _>(Int.Req.)
I
| Waveform
= | .]
|$ [Generation OCnA
OCRnA 2 ;
> 1
| [Fed oCnB
| TOP (Int.Req.)
% ! Values Waveform
— | . .
28] — | Generation OCnB
< |
<Q(I
« OCRnB ! (From Analog
: Comparator Ouput)
| ICFn (Int.Req.)
i I
I)
Edge Noise
- IC‘Rn | Detector [Canceler
| | ICPn
| TCCRnA | | TCCRnB |

Note: 1. Refer to Figure 1-1 on page 10, Table 13-6 on page 64, and Table 13-12 on page 68 for Timer/Counter1 pin place-
ment and description.

Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Register (ICR1) are all
16-bit registers. Special procedures must be followed when accessing the 16-bit registers. These procedures are
described in the section “Accessing 16-bit Registers” on page 95. The Timer/Counter Control Registers
(TCCR1A/B) are 8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in
the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked
with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these registers
are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin. The
Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement)
its value. The Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is
referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Counter value at all time.
The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency out-
put on the Output Compare pin (OC1A/B). Refer to “Output Compare Units” on page 101. The compare match
event will also set the Compare Match Flag (OCF1A/B) which can be used to generate an output compare interrupt
request.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 94

17.2.2

17.2.3

17.3

ATmega32A

The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on
either the Input Capture Pin (ICP1) or on the Analog Comparator pins (See “Analog Comparator” on page 198.)
The Input Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise
spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the
OCR1A Register, the ICR1 Register, or by a set of fixed values. When using OCR1A as TOP value in a PWM
mode, the OCR1A Register can not be used for generating a PWM output. However, the TOP value will in this
case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP value is required, the
ICR1 Register can be used as an alternative, freeing the OCR1A to be used as PWM output.

Definitions
The following definitions are used extensively throughout the document:

Table 17-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF,

TOP 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assign-
ment is dependent of the mode of operation.
Compatibility

The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit AVR Timer/Coun-
ter. This 16-bit Timer/Counter is fully compatible with the earlier version regarding:

« All 16-bit Timer/Counter related 1/0 Register address locations, including Timer Interrupt Registers.

« Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.

* Interrupt Vectors.
The following control bits have changed name, but have same functionality and register location:

* PWM10 is changed to WGM10.
*« PWM11 is changed to WGM11.
* CTC1 is changed to WGM12.
The following bits are added to the 16-bit Timer/Counter Control Registers:

* FOC1A and FOC1B are added to TCCR1A.
* WGM13 is added to TCCR1B.
The 16-bit Timer/Counter has improvements that will affect the compatibility in some special cases.

Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus.
The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit
register for temporary storing of the high byte of the 16-bit access. The same temporary register is shared between
all 16-bit registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When
the low byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is
read by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as
the low byte is read.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 95

ATmega32A

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit registers does
not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read
before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts updates
the temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 Registers.
Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Example!")

; Set TCNT1 to O0x01FF
1dirl7,0x01

1di rl6, OXFF

out TCNT1H, r17

out TCNT1L, rl6

; Read TCNT1 into rl7:rlé
in rlé6,TCNT1L

in r17,TCNT1H

C Code Example!")

unsigned int i;

/* Set TCNT1 to O0xO01FF */
TCNT1 = Ox1FF;

/* Read TCNT1 into i */
i = TCNT1;

Note: 1. See “About Code Examples” on page 14.
The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the
same or any other of the 16-bit Timer Registers, then the result of the access outside the interrupt will be corrupted.
Therefore, when both the main code and the interrupt code update the temporary register, the main code must dis-
able the interrupts during the 16-bit access.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 96

ATmega32A

The following code examples show how to do an atomic read of the TCNT1 Register contents. Reading any of the

OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example!")

TIM16_ ReadTCNT1:
; Save global interrupt flag
in r18, SREG
; Disable interrupts
cli
; Read TCNT1 into rl7:rlé
in rle,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag
out SREG, rl1l8

ret

C Code Example!!

unsigned int TIM16 ReadTCNT1(void)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */
SREG = sreg;

return 1i;

Note: 1. See “About Code Examples” on page 14.
The assembly code example returns the TCNT1 value in the r17:r16 register pair.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 97

17.3.1

17.4

17.5

ATmega32A

The following code examples show how to do an atomic write of the TCNT1 Register contents. Writing any of the
OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example!"

TIM16 WriteTCNTL1:
; Save global interrupt flag
in r18, SREG
; Disable interrupts
cli
; Set TCNT1 to rl7:rle6
out TCNT1H, r17
out TCNT1L, rl6
; Restore global interrupt flag
out SREG, r1l8

ret

C Code Example!"

void TIM16 WriteTCNT1l (unsigned int i)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();
/* Set TCNT1 to i */
TCNT1 = 1i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See “About Code Examples” on page 14.
The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1.

Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte
only needs to be written once. However, note that the same rule of atomic operation described previously also
applies in this case.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the
Clock Select logic which is controlled by the Clock Select (CS12:0) bits located in the Timer/Counter Control Reg-
ister B (TCCR1B). For details on clock sources and prescaler, see “Timer/Counter0 and Timer/Counter1
Prescalers” on page 90.

Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 17-2 shows
a block diagram of the counter and its surroundings.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 98

17.6

ATmega32A

Figure 17-2. Counter Unit Block Diagram
DATA BUS (s-bit)

- > TOV
n
(Int.Req.)
Clock Select
Count Edge
-t -t Tn
[ToNTaH(8bity | TCNTL(8bit) | Clear | ek, Detector
-+ Control Logic [
TCNTR (16-bit Counter) ¢ 2rection
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNT1 by 1.
Direction Select between increment and decrement.
Clear Clear TCNT1 (set all bits to zero).
clk, Timer/Counter clock.
TOP Signalize that TCNT1 has reached maximum value.
BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) containing the upper
eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8 bits. The TCNT1H Register can only
be indirectly accessed by the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU accesses
the high byte temporary register (TEMP). The temporary register is updated with the TCNT1H value when the
TCNT1L is read, and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important
to notice that there are special cases of writing to the TCNT1 Register when the counter is counting that will give
unpredictable results. The special cases are described in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clky,). The clky can be generated from an external or internal clock source, selected by the Clock Select bits
(CS12:0). When no clock source is selected (CS12:0 = 0) the timer is stopped. However, the TCNT1 value can be
accessed by the CPU, independent of whether clk, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits (WGM13:0) located in
the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B). There are close connections between how
the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC1x. For more
details about advanced counting sequences and waveform generation, see “Modes of Operation” on page 104.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by the WGM13:0 bits.
TOV1 can be used for generating a CPU interrupt.

Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-
stamp indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via
the ICP1 pin or alternatively, via the Analog Comparator unit. The time-stamps can then be used to calculate fre-
quency, duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be used for creating
a log of the events.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 99

17.6.1

ATmega32A

The Input Capture unit is illustrated by the block diagram shown in Figure 17-3. The elements of the block diagram
that are not directly a part of the Input Capture unit are gray shaded. The small “n” in register and bit names indi-
cates the Timer/Counter number.

Figure 17-3. Input Capture Unit Block Diagram

- t : DATA BUS (s-bit) -

| TEMP Bbi) |

v

ICRnH (8-bity | ICRnL (8-bit) | | TCNTnH(8-bit) | TCNTNL (8-bit)

»| WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)

| = |

’ el Acic ICNC ICES
P Analog ¢ ¢
Comparator o -
Noise o Edge _
Canceler Detector - ICFn (Int.Req.)
ICPn >

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively on the Analog
Comparator output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered.
When a capture is triggered, the 16-bit value of the counter (TCNT1) is written to the Input Capture Register
(ICR1). The Input Capture Flag (ICF1) is set at the same system clock as the TCNT1 value is copied into ICR1
Register. If enabled (TICIE1 = 1), the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is
automatically cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low byte (ICR1L) and
then the high byte (ICR1H). When the low byte is read the high byte is copied into the high byte temporary register
(TEMP). When the CPU reads the ICR1H I/O location it will access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes the ICR1 Register for
defining the counter’s TOP value. In these cases the Waveform Generation mode (WGM1[3:0]) bits must be set
before the TOP value can be written to the ICR1 Register. When writing the ICR1 Register the high byte must be
written to the ICR1H 1/O location before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers” on page 95.

Input Capture Pin Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1). Timer/Counter1 can alternatively
use the Analog Comparator output as trigger source for the Input Capture unit. The Analog Comparator is selected
as trigger source by setting the Analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control and
Status Register (ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag must
therefore be cleared after the change.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 100

17.6.2

17.6.3

17.6.4

ATmega32A

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled using the same
technique as for the T1 pin (Figure 16-1 on page 90). The edge detector is also identical. However, when the noise
canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by four system
clock cycles. Note that the input of the noise canceler and edge detector is always enabled unless the Timer/Coun-
ter is set in a waveform generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is
monitored over four samples, and all four must be equal for changing the output that in turn is used by the edge
detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in Timer/Counter Control
Register B (TCCR1B). When enabled the noise canceler introduces additional four system clock cycles of delay
from a change applied to the input, to the update of the ICR1 Register. The noise canceler uses the system clock
and is therefore not affected by the prescaler.

Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the
incoming events. The time between two events is critical. If the processor has not read the captured value in the
ICR1 Register before the next event occurs, the ICR1 will be overwritten with a new value. In this case the result of
the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the interrupt handler routine
as possible. Even though the Input Capture interrupt has relatively high priority, the maximum interrupt response
time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed during
operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture.
Changing the edge sensing must be done as early as possible after the ICR1 Register has been read. After a
change of the edge, the Input Capture Flag (ICF1) must be cleared by software (writing a logical one to the 1/O bit
location). For measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt handler is
used).

Output Compare Units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register (OCR1x). If TCNT equals
OCR1x the comparator signals a match. A match will set the Output Compare Flag (OCF1x) at the next timer clock
cycle. If enabled (OCIE1x = 1), the Output Compare Flag generates an output compare interrupt. The OCF1x Flag
is automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output
according to operating mode set by the Waveform Generation mode (WGM13:0) bits and Compare Output mode
(COM1x1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation (refer to “Modes of Operation” on page 104.)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (that is, counter resolu-
tion). In addition to the counter resolution, the TOP value defines the period time for waveforms generated by the
Waveform Generator.

Figure 17-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names indicates
the device number (n = 1 for Timer/Counter1), and the “x” indicates output compare unit (A/B). The elements of the
block diagram that are not directly a part of the output compare unit are gray shaded.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 101

17.6.5

17.6.6

ATmega32A

Figure 17-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit
37 3 t = >
‘ TEMP (8-bit) ‘
—] l ¥ ¥
[oCRnxH But. (8-bit) | OCRnxL Buf. (8-bit) | [TonTnH (8-bity | TCNTnL 8-bit) |
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
*
—¥
[ocRnxH (8-bity | OCRnxL (8-bit) |
OCRnNXx (16-bit Register)
| = (16-bit Comparator) |
—— OCFnx (Int.Req.)
A
TOP —
Waveform Generator »| OCnx
BOTTOM —— !

WGMn3:0 COMnNXx1:0

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For
the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double
buffering synchronizes the update of the OCR1x Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR1x Buffer Register, and if double buffering is disabled the CPU will access the OCR1x
directly. The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation (the
Timer/Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is
not read via the high byte temporary register (TEMP). However, it is a good practice to read the low byte first as
when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Register since the
compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be written first. When the high byte 1/0
location is written by the CPU, the TEMP Register will be updated by the value written. Then when the low byte
(OCR1xL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits of either the OCR1x
buffer or OCR1x Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers” on page 95.

Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOC1x) bit. Forcing compare match will not set the OCF1x Flag or reload/clear the
timer, but the OC1x pin will be updated as if a real compare match had occurred (the COM1x1:0 bits settings
define whether the OC1x pin is set, cleared or toggled).

Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR1x to be initialized to the same value as TCNT1 without trigger-
ing an interrupt when the Timer/Counter clock is enabled.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 102

17.6.7

17.7

ATmega32A

Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock cycle, there are
risks involved when changing TCNT1 when using any of the output compare units, independent of whether the
Timer/Counter is running or not. If the value written to TCNT1 equals the OCR1x value, the compare match will be
missed, resulting in incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with vari-
able TOP values. The compare match for the TOP will be ignored and the counter will continue to OxFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is down counting.

The setup of the OC1x should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OC1x value is to use the force output compare (FOC1x) strobe bits in Normal mode.
The OC1x Register keeps its value even when changing between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value. Changing the
COM1x1:0 bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses the COM1x1:0
bits for defining the Output Compare (OC1x) state at the next compare match. Secondly the COM1x1:0 bits control
the OC1x pin output source. Figure 17-5 shows a simplified schematic of the logic affected by the COM1x1:0 bit
setting. The 1/0 Registers, 1/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general 1/0
Port Control Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the
OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a System Reset occur, the OC1x
Register is reset to “0”.

Figure 17-5. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform D Q
FOCnx Generator
— 1
OCnx
OCnx :> Pin
0
A
»D Q
" L
2 PORT
<
<
e =D Q
\ DDR
clk,o

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform Generator if either
of the COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the Data Direc-
tion Register (DDR) for the port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x) must be set as
output before the OC1x value is visible on the pin. The port override function is generally independent of the Wave-
form Generation mode, but there are some exceptions. Refer to Table 17-2, Table 17-3 and Table 17-4 for details.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 103

17.71

17.8

17.8.1

17.8.2

ATmega32A

The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled. Note
that some COM1x1:0 bit settings are reserved for certain modes of operation. Refer to “Register Description” on
page 112.

The COM1x1:0 bits have no effect on the Input Capture unit.

Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes,
setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the OC1x Register is to be performed on
the next compare match. For compare output actions in the non-PWM modes refer to Table 17-2 on page 113. For
fast PWM mode refer to Table 17-3 on page 113, and for phase correct and phase and frequency correct PWM
refer to Table 17-4 on page 114.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the output compare pins, is defined by the
combination of the Waveform Generation mode (WGM13:0) and Compare Output mode (COM1x1:0) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COM1x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted
PWM). For non-PWM modes the COM1x1:0 bits control whether the output should be set, cleared or toggle at a
compare match. Refer to “Compare Match Output Unit” on page 103.

For detailed timing information, refer to “Timer/Counter Timing Diagrams” on page 111.

Normal Mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting direction is always
up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum
16-bit value (MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Coun-
ter Overflow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in
this case behaves like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by software. There are no
special cases to consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between the
external events must not exceed the resolution of the counter. If the interval between events are too long, the timer
overflow interrupt or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to gen-
erate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register are used to manipu-
late the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1) matches
either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the
counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-6. The counter value (TCNT1) increases until a com-
pare match occurs with either OCR1A or ICR1, and then counter (TCNT1) is cleared.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 104

17.8.3

ATmega32A

Figure 17-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
A/ (Interrupt on TOP)

TCNTn

OCnA ! !
(Toggle)

Period }471 44472—%3#47444

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCF1A or
ICF1 Flag according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler
routine can be used for updating the TOP value. However, changing the TOP to a value close to BOTTOM when
the counter is running with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its maximum value
(OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many cases this feature is
not desirable. An alternative will then be to use the fast PWM mode using OCR1A for defining TOP (WGM13:0 =
15) since the OCR1A then will be double buffered.

(COMnA1:0 = 1)

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical level on each
compare match by setting the compare output mode bits to toggle mode (COM1A1:0 = 1). The OC1A value will not
be visible on the port pin unless the data direction for the pin is set to output (DDR_OC1A = 1). The waveform gen-
erated will have a maximum frequency of fogqia = fok 110/2 Wwhen OCR1A is set to zero (0x0000). The waveform
frequency is defined by the following equation: -

p _ Jelk 1o
OCnd 2.N-(1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x0000.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation.
The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting Compare Output mode,
the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x, and set at BOTTOM.
In inverting Compare Output mode output is set on compare match and cleared at BOTTOM. Due to the single-
slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct and
phase and frequency correct PWM modes that use dual-slope operation. This high frequency makes the fast PWM
mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), hence reduces total system cost.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 105

ATmega32A

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1 or OCR1A. The
minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or
OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following equation:

_ log(TOP+1)

RFP WM Iog (2)

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values
0x00FF, Ox01FF, or Ox03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A
(WGM13:0 = 15). The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 17-7. The figure shows fast PWM mode when OCR1A or ICR1 is used to define
TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a com-
pare match occurs.

Figure 17-7. Fast PWM Mode, Timing Diagram

OCRnx / TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
OCnA Interrupt Flag Set
(Interrupt on TOP)

TCNTn

v v YOV Y vyvvy v vy

OCnx || | (COMnX1:0 = 2)

OCnx F 1T UUL |] (COMnX1:0 = 3)
Period ‘%1 —+72—+73—+74—+5+6+774+784>‘

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition the OC1A or ICF1
Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A or ICR1 is used for defining the TOP
value. If one of the interrupts are enabled, the interrupt handler routine can be used for updating the TOP and com-
pare values.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of
all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will
never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP value. The ICR1
Register is not double buffered. This means that if ICR1 is changed to a low value when the counter is running with
none or a low prescaler value, there is a risk that the new ICR1 value written is lower than the current value of
TCNT1. The result will then be that the counter will miss the compare match at the TOP value. The counter will
then have to count to the MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare match can
occur. The OCR1A Register however, is double buffered. This feature allows the OCR1A 1/O location to be written
anytime. When the OCR1A /O location is written the value written will be put into the OCR1A Buffer Register. The
OCR1A Compare Register will then be updated with the value in the Buffer Register at the next timer clock cycle

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 106

17.8.4

ATmega32A

the TCNT1 matches TOP. The update is done at the same timer clock cycle as the TCNT1 is cleared and the
TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A
Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively
changed (by changing the TOP value), using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the
COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting the
COM1x1:0 to 3 (see Table 17-2 on page 113). The actual OC1x value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by seting (or clearing) the
OC1x Register at the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

~ Jakio
Jocnxrwm = N1+ 70P)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in
the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the output will be a narrow spike for each
TOP+1 timer clock cycle. Setting the OCR1x equal to TOP will result in a constant high or low output (depending
on the polarity of the output set by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC1A to toggle
its logical level on each compare match (COM1A1:0 = 1). This applies only if OCR1A is used to define the TOP
value (WGM13:0 = 15). The waveform generated will have a maximum frequency of focia = fok 110/2 when OCR1A
is set to zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double buffer feature of
the output compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 =1, 2, 3, 10, or 11) provides a
high resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase
and frequency correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOT-
TOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due to the symmetric
feature of the dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum res-
olution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following
equation:

_ log(TOP+1)
RPCPWM - Iog(2)

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed val-
ues O0x00FF, Ox01FF, or Ox03FF (WGM13:0 = 1, 2, or 3), the value in ICR1 (WGM13:0 = 10), or the value in
OCR1A (WGM13:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNT1
value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
in Figure 17-8. The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 107

ATmega32A

TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent
compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match
occurs.

Figure 17-8. Phase Correct PWM Mode, Timing Diagram

OCRNnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

(COMnx1:0 = 2)
(COMnx1:0 = 3)

Period]

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or
ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accordingly at the same timer clock cycle as
the OCR1x Registers are updated with the double buffer value (at TOP). The Interrupt Flags can be used to gener-
ate an interrupt each time the counter reaches the TOP or BOTTOM value.

OCnx

OCnx

.
_

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of
all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will
never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCR1x Registers are written. As the third period shown in Figure 17-8 illustrates,
changing the TOP actively while the Timer/Counter is running in the phase correct mode can result in an unsym-
metrical output. The reason for this can be found in the time of update of the OCR1x Register. Since the OCR1x
update occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of the falling slope is
determined by the previous TOP value, while the length of the rising slope is determined by the new TOP value.
When these two values differ the two slopes of the period will differ in length. The difference in length gives the
unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when chang-
ing the TOP value while the Timer/Counter is running. When using a static TOP value there are practically no
differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting
the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COM1x1:0 to 3 (see Table 17-2 on page 113). The actual OC1x value will only be visible on the port pin if the
data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clear-
ing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the counter decre-

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 108

17.8.5

ATmega32A

ments. The PWM frequency for the output when using phase correct PWM can be calculated by the following
equation:

_ Jak o
fOCnxPCPWM - 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set
equal to TOP the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will
have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 =1, the
OC1A output will toggle with a 50% duty cycle.

Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode (WGM13:0
= 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation option. The phase
and frequency correct PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The
counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Com-
pare Output mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x
while upcounting, and set on the compare match while downcounting. In inverting Compare Output mode, the
operation is inverted. The dual-slope operation gives a lower maximum operation frequency compared to the sin-
gle-slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are
preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the
OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 17-8 and Figure 17-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICR1 or OCR1A.
The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit
(ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated using the following equation:

_ log(ToP+1)
Rercrwm = —og@)

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the
value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The counter has then reached the TOP and
changes the count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram
for the phase correct and frequency correct PWM mode is shown in Figure 17-9. The figure shows phase and fre-
quency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between
OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match occurs.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 109

ATmega32A

Figure 17-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx / TOP Update
and

TOVn Interrupt Flag Set
(Interrupt on Bottom)

Y
OCnx (COMNx1:0 = 2)
OCnx (COMnXx1:0 = 3)

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x Registers are updated
with the double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the
OC1A or ICF1 Flag set when TCNT1 has reached TOP. The Interrupt Flags can then be used to generate an inter-
rupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of
all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will
never occur between the TCNT1 and the OCR1x.

As Figure 17-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods.
Since the OCR1x Registers are updated at BOTTOM, the length of the rising and the falling slopes will always be
equal. This gives symmetrical output pulses and is therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A
Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively
changed by changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x
pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be gener-
ated by setting the COM1x1:0 to 3 (see Table 17-4 on page 114). The actual OC1x value will only be visible on the
port pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by set-
ting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter
increments, and clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the
counter decrements. The PWM frequency for the output when using phase and frequency correct PWM can be cal-
culated by the following equation:
P _ Jako
OCnxPFCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set
equal to TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 110

17.9

ATmega32A

opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A
output will toggle with a 50% duty cycle.

Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky4) is therefore shown as a clock enable signal
in the following figures. The figures include information on when Interrupt Flags are set, and when the OCR1x Reg-
ister is updated with the OCR1x buffer value (only for modes utilizing double buffering). Figure 17-10 shows a
timing diagram for the setting of OCF1x.

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF1x, No Prescaling

clk,o
clky,
(clk,o/1)
TCNTn N OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnx OCRnx Value
OCFnx

Figure 17-11 shows the same timing data, but with the prescaler enabled.

Figure 17-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (f 0/8)

A A AR AR
s T T T

—

TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnNXx OCRnx Value
OCFnx

Figure 17-12 shows the count sequence close to TOP in various modes. When using phase and frequency correct
PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams will be the same, but TOP should
be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes that set the
TOV1 Flag at BOTTOM.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 111

ATmega32A

Figure 17-12. Timer/Counter Timing Diagram, no Prescaling

clk,q

clk;,
(clk,o/1)

TCNTn
(CTC and FPWM)

TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value New OCRnx Value

Figure 17-13 shows the same timing data, but with the prescaler enabled.

Figure 17-13. Timer/Counter Timing Diagram, with Prescaler (f; 0/8)

o~ (R
P | | I | I

TCNTn
(CTC and FPWM)

TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value New OCRnx Value

17.10 Register Description

17.10.1 TCCR1A - Timer/Counter1 Control Register A

Bit 7 6 5 4 3 2 1 0

| comiat1 | comiao | comiB1 | cOM1BO | FOC1A FOC1B | WGM11 | WGM10 | TCCR1A
Read/Write R/W R/W R/W R/W w w R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:6 —- COM1A1:0: Compare Output Mode for Compare unit A

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 112

ATmega32A

¢ Bit 5:4 —- COM1B1:0: Compare Output Mode for Compare unit B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respectively) behavior. If one
or both of the COM1A1:0 bits are written to one, the OC1A output overrides the normal port functionality of the I/O
pin it is connected to. If one or both of the COM1B1:0 bit are written to one, the OC1B output overrides the normal
port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is dependent of the WGM13:0
bits setting. Table 17-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to a normal ora CTC
mode (non-PWM).

Table 17-2. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0O Description
0 0 Normal port operation, OC1A/OC1B disconnected.
0 1 Toggle OC1A/OC1B on compare match
1 0 Clear OC1A/OC1B on compare match (Set output
to low level)
1 1 Set OC1A/OC1B on compare match (Set output to
high level)

Table 17-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM mode.

Table 17-3. Compare Output Mode, Fast PWM™
COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port
operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on compare match, set
OC1A/OC1B at BOTTOM,

(non-inverting mode)

1 1 Set OC1A/OC1B on compare match, clear

OC1A/OC1B at BOTTOM,
(inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In this case the compare
match is ignored, but the set or clear is done at BOTTOM. Refer to “Fast PWM Mode” on page 105 for more
details.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 113

ATmega32A

Table 17-4 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase correct or the phase
and frequency correct, PWM mode.

Table 17-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM (")
COM1A1/COM1B1 COM1A0/COM1B0
0 0

Description

Normal port operation, OC1A/OC1B
disconnected.

WGM13:0 = 9 or 14: Toggle OC1A on
Compare Match, OC1B disconnected (normal
port operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

Clear OC1A/OC1B on compare match when
up-counting. Set OC1A/OC1B on compare
match when downcounting.

Set OC1A/OC1B on compare match when up-
counting. Clear OC1A/OC1B on compare
match when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. Refer to “Phase Correct

PWM Mode” on page 107. for more details.
¢ Bit 3 - FOC1A: Force Output Compare for Compare unit A

¢ Bit 2 - FOC1B: Force Output Compare for Compare unit B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensur-
ing compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a
PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the
Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that
the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that
determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare match
(CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

* Bit1:0 - WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting sequence of the
counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see
Table 17-5. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on
Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. Refer to “Modes of Oper-
ation” on page 104.

Table 17-5. Waveform Generation Mode Bit Description'"
WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation TOP OCR1x Set on
0 0 0 0 0 Normal OxFFFF | Immediate MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF | TOP BOTTOM

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 114

ATmega32A

Table 17-5. Waveform Generation Mode Bit Description("
WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation TOP OCR1x Set on
4 0 1 0 0 CTC OCR1A | Immediate MAX
5 0 1 0 1 Fast PWM, 8-bit 0xO0FF | BOTTOM TOP
6 0 1 1 0 Fast PWM, 9-bit 0x01FF | BOTTOM TOP
7 0 1 1 1 Fast PWM, 10-bit 0x03FF | BOTTOM TOP
8 1 0 0 0 PWM, Phase and Frequency Correct | ICR1 BOTTOM BOTTOM
9 1 0 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX
13 1 1 0 1 Reserved - - -
14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP
15 1 1 1 1 Fast PWM OCR1A | BOTTOM TOP
Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

17.10.2 TCCR1B - Timer/Counter1 Control Register B

Bit 7 6 5 4 3 2 1 0
| 'eNct1 | icEst | - | WGM13 | WGM12 Cs12 [LXE cs10 | TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is activated, the
input from the Input Capture Pin (ICP1) is filtered. The filter function requires four successive equal valued samples
of the ICP1 pin for changing its output. The Input Capture is therefore delayed by four Oscillator cycles when the
Noise Canceler is enabled.

¢ Bit 6 — ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a capture event. When the
ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and when the ICES1 bit is written to one, a
rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the Input Capture Reg-
ister (ICR1). The event will also set the Input Capture Flag (ICF1), and this can be used to cause an Input Capture
Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the TCCR1A and the
TCCR1B Register), the ICP1 is disconnected and consequently the Input Capture function is disabled.

* Bit 5 — Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero
when TCCR1B is written.

¢ Bit 4:3 — WGM13:2: Waveform Generation Mode
See TCCR1A Register description.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 115

ATmega32A

¢ Bit 2:0 — CS12:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure 17-10 and Figure

17-11.
Table 17-6. Clock Select Bit Description
CS12 Cs11 Cs10 Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,,o/256 (From prescaler)
1 0 1 clk;0/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.

External clock source on T1 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

17.10.3 TCNT1H and TCNT1L - Timer/Counter1

Bit

Read/Write
Initial Value

7 6 5 4 3 2 1 0
TCNT1[15:8]
TCNTA[7:0]
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

TCNT1H
TCNTIL

The two Timer/Counter 1/0O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for read
and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are
read and written simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See
“Accessing 16-bit Registers” on page 95.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match between
TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all compare

units.

17.10.4 OCR1AH and OCR1AL - Output Compare Register 1 A

Bit 7 6 5 4 3 2 1 0
OCR1A[15:8] OCR1AH
OCR1A[7:0] OCR1AL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 116

ATmega32A

17.10.5 OCR1BH and OCR1BL - Output Compare Register 1 B

Bit 7 6 5 4 3 2 1 0
OCR1B[15:8] OCR1BH
OCR1B[7:0] OCR1BL
Read/Write R/W R/W R/IW R/W R/IW R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value
(TCNT1). A match can be used to generate an output compare interrupt, or to generate a waveform output on the
OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written simultane-
ously when the CPU writes to these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. Refer to “Accessing 16-bit Registers” on
page 95.

17.10.6 ICR1H and ICR1L — Input Capture Register 1

Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICR1L
Read/Write R/W R/W R/W R/W R/IW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or
optionally on the analog comparator output for Timer/Counter1). The Input Capture can be used for defining the
counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. Refer to “Accessing 16-bit Registers” on
page 95.

17.10.7 TIMSK - Timer/Counter Interrupt Mask Register(!

Bit 7 6 5 4 3 2 1 0
| ocie2 | ToOIE2 | TICIE1 | OCIE1A | OCIE1B | TOIE1 OCIEO TOIEO | TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are described in this
section. The remaining bits are described in their respective timer sections.

¢ Bit 5 - TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Input Capture Interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on page
51.) is executed when the ICF1 Flag, located in TIFR, is set.

¢ Bit 4 — OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare A match interrupt is enabled. The corresponding Interrupt Vector (See “Inter-
rupts” on page 51.) is executed when the OCF1A Flag, located in TIFR, is set.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 117

ATmega32A

¢ Bit 3 — OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare B match interrupt is enabled. The corresponding Interrupt Vector (See “Inter-
rupts” on page 51.) is executed when the OCF1B Flag, located in TIFR, is set.

¢ Bit 2 - TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on page 51) is
executed when the TOV1 Flag, located in TIFR, is set.

17.10.8 TIFR — Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocr2 | TOov2 | IcF1 | OCF1A | OCF1B TOV1 OCFO0 T0V0 | TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains flag bits for several Timer/Counters, but only Timer1 bits are described in this section. The
remaining bits are described in their respective timer sections.

¢ Bit 5 - ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register (ICR1) is set by the
WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be
cleared by writing a logic one to its bit location.

¢ Bit 4 — OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register A
(OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively,
OCF1A can be cleared by writing a logic one to its bit location.

¢ Bit 3 - OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register B
(OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively,
OCF1B can be cleared by writing a logic one to its bit location.

¢ Bit 2 - TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the TOV1 Flag is set
when the timer overflows. Refer to Table 17-5 on page 114 for the TOV1 Flag behavior when using another
WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow interrupt vector is executed. Alternatively, TOV1
can be cleared by writing a logic one to its bit location.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 118

ATmega32A

18. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

18.1 Features
* Single Compare unit Counter
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
* Allows clocking from External 32kHz Watch Crystal Independent of the 1/0 Clock

18.2 Overview

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block diagram
of the 8-bit Timer/Counter is shown in Figure 18-1. For the actual placement of I/O pins, refer to “Pinout
ATmega32A” on page 10. CPU accessible I/O Registers, including 1/O bits and I/O pins, are shown in bold. The
device-specific I1/0 Register and bit locations are listed in the “Register Description” on page 131.

Figure 18-1. 8-bit Timer/Counter Block Diagram
4

A

- TCCRn
N
count _ ovn
clear " (Int.Req.)
Control Logic
direction clky,
A - TOSC1
BOTTOM .
Prescaler Oscillator
AR

- TOSC2

Timer/Counter
TCNTn | |—=0—|
clk,

% * OCn Vo
F(Int.Req.)

Waveform
Generation

| OCn

Y

'
i

ol

DATABUS

| OCRn |
Synchronized Status flags

; Synchronization Unit

———— clkuo

[——clk,gy

Status flags }
J I~ ASSRn A

asynchronous mode
select (ASn)

A

18.2.1 Registers
The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt request (shorten
as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 119

18.2.2

18.3

18.4

ATmega32A

with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these registers
are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins,
as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status Register
(ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select
logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter value at all times. The
result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the Output Compare Pin (OC2). Refer to “Output Compare Unit” on page 121 for details. The compare match event
will also set the Compare Flag (OCF2) which can be used to generate an output compare interrupt request.

Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise
form must be used (that is, TCNT2 for accessing Timer/Counter2 counter value and so on). The definitions in Table
18-1 are also used extensively throughout the document.

Table 18-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in
the count sequence. The TOP value can be assigned to be the fixed value
OxFF (MAX) or the value stored in the OCR2 Register. The assignment is
dependent on the mode of operation.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The
clock source clky, is by default equal to the MCU clock, clk,o. When the AS2 bit in the ASSR Register is written to
logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For
details on asynchronous operation, see “ASSR — Asynchronous Status Register” on page 134. For details on clock
sources and prescaler, see “Timer/Counter Prescaler” on page 131.

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 18-2 shows a
block diagram of the counter and its surrounding environment.

Figure 18-2. Counter Unit Block Diagram

TOVn

—»
DATA BUS (ntReq)
-t TOSsC1
count
BN ok T/C
clear)
TCNTn Bl Control Logic [« 0 Prescaler Oscillator
direction
g » TOSC2
bottom T Ttop C|k]/o

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 120

18.5

ATmega32A

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clky, Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clky,). clky, can be generated from an external or internal clock source, selected by the Clock Select bits
(CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be
accessed by the CPU, regardless of whether clk;, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter
Control Register (TCCR2). There are close connections between how the counter behaves (counts) and how
waveforms are generated on the Output Compare output OC2. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 123.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by the WGM21:0 bits.
TOV2 can be used for generating a CPU interrupt.

Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2). Whenever
TCNT2 equals OCR2, the comparator signals a match. A match will set the Output Compare Flag (OCF2) at the
next timer clock cycle. If enabled (OCIE2 = 1), the Output Compare Flag generates an output compare interrupt.
The OCF2 Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF2 Flag can be
cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGM21:0 bits and Compare Output mode (COM21:0)
bits. The max and bottom signals are used by the waveform generator for handling the special cases of the
extreme values in some modes of operation (“Modes of Operation” on page 123). Figure 18-3 shows a block dia-
gram of the output compare unit.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 121

18.5.1

18.5.2

18.5.3

ATmega32A

Figure 18-3. Output Compare Unit, Block Diagram
DATA BUS

| = (8-bit Comparator) |

OCFn (Int.Req.)

Y

P
bottom Waveform Generator »| 0Cxy
FOCn >

L]

WGMn1:0 COMn1:0

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the nor-
mal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering
synchronizes the update of the OCR2 Compare Register to either top or bottom of the counting sequence. The
synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output
glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR2 Buffer Register, and if double buffering is disabled the CPU will access the OCR2
directly.

Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOC2) bit. Forcing compare match will not set the OCF2 Flag or reload/clear the timer,
but the OC2 pin will be updated as if a real compare match had occurred (the COM21:0 bits settings define
whether the OC2 pin is set, cleared or toggled).

Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock
cycle, even when the timer is stopped. This feature allows OCR2 to be initialized to the same value as TCNT2 with-
out triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are
risks involved when changing TCNT2 when using the output compare unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2 value, the compare match will be
missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM
when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port pin to output. The
easiest way of setting the OC2 value is to use the Force Output Compare (FOC2) strobe bit in Normal mode. The
OC2 Register keeps its value even when changing between Waveform Generation modes.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 122

18.6

18.6.1

18.7

ATmega32A

Be aware that the COMZ2[1:0] bits are not double buffered together with the compare value. Changing the
COM2[1:0] bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COM21:0) bits have two functions. The Waveform Generator uses the COM2[1:0] bits
for defining the Output Compare (OC2) state at the next compare match. Also, the COMZ2[1:0] bits control the OC2
pin output source. Figure 18-4 shows a simplified schematic of the logic affected by the COM2[1:0] bit setting. The
I/0 Registers, I/O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general 1/0 Port Control
Registers (DDR and PORT) that are affected by the COM2[1:0] bits are shown. When referring to the OC2 state,
the reference is for the internal OC2 Register, not the OC2 pin.

Figure 18-4. Compare Match Output Unit, Schematic

—D

COMn1
COMnO Waveform
D Q
FOCn Generator
— 1
OCn
OCn 0 > Pin
f 3
»D Q
% [
m PORT
<
&
= »D Q
DDR
clkyo

The general 1/O port function is overridden by the Output Compare (OC2) from the waveform generator if either of
the COM2[1:0] bits are set. However, the OC2 pin direction (input or output) is still controlled by the Data Direction
Register (DDR) for the port pin. The Data Direction Register bit for the OC2 pin (DDR_OC2) must be set as output
before the OC2 value is visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the output compare pin logic allows initialization of the OC2 state before the output is enabled. Note
that some COMZ2[1:0] bit settings are reserved for certain modes of operation. Refer to “Register Description” on
page 131.

Compare Output Mode and Waveform Generation
The waveform generator uses the COMZ2[1:0] bits differently in Normal, CTC, and PWM modes. For all modes, set-
ting the COM2[1:0] = 0 tells the Waveform Generator that no action on the OC2 Register is to be performed on the
next compare match. For compare output actions in the non-PWM modes refer to Table 18-3 on page 132. For fast
PWM mode, refer to Table 18-4 on page 132, and for phase correct PWM refer to Table 18-5 on page 133.

A change of the COM21:0 bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOC2 strobe bits.

Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the output compare pins, is defined by the
combination of the Waveform Generation mode (WGMZ2[1:0]) and Compare Output mode (COM2[1:0]) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 123

18.7.1

18.7.2

ATmega32A

The COMZ2[1:0] bits control whether the PWM output generated should be inverted or not (inverted or non-inverted
PWM). For non-PWM modes the COMZ2[1:0] bits control whether the output should be set, cleared, or toggled at a
compare match. Refer to “Compare Match Output Unit” on page 123.

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 127.

Normal Mode

The simplest mode of operation is the Normal mode (WGM2[1:0] = 0). In this mode the counting direction is always
up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-
bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow
Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case
behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There are no special
cases to consider in the normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the output compare to gen-
erate waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM2[1:0] = 2), the OCR2 Register is used to manipulate the counter
resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2. The
OCRZ2 defines the top value for the counter, hence also its resolution. This mode allows greater control of the com-
pare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 18-5. The counter value (TCNT2) increases until a com-
pare match occurs between TCNT2 and OCR2, and then counter (TCNT2) is cleared.

Figure 18-5. CTC Mode, Timing Diagram

OCn Interrupt Flag Set

TCNTn

OCn ! ! _
(Toggle) (COMn1:0 = 1)
Period 1%2;—‘«3%4—»‘

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2 Flag. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing the
TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done
with care since the CTC mode does not have the double buffering feature. If the new value written to OCR2 is
lower than the current value of TCNTZ2, the counter will miss the compare match. The counter will then have to
count to its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical level on each com-
pare match by setting the Compare Output mode bits to toggle mode (COM2[1:0] = 1). The OC2 value will not be
visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 124

18.7.3

ATmega32A

maximum frequency of foe, = fy 0/2 when OCR2 is set to zero (0x00). The waveform frequency is defined by the
following equation:

P Jeik_1io
0Cn— 2.N.(1+OCRn)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM2[1:0] = 3) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter
counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC2) is cleared on the compare match between TCNT2 and OCR2, and set at BOTTOM. In inverting
Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that
uses dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectifi-
cation, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 18-6. The
TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent
compare matches between OCR2 and TCNT2.

Figure 18-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update and
TOVn Interrupt Flag Set

TCNTn M /l//l// / /V
R |

OCn L L] || (COMn1:0 = 2)

‘ocn 1T 1 [] (COMn1:0 = 3)

ot e st o]

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is enabled, the
interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the COM2[1:0]
bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2[1:0]
to 3 (see Table 18-4 on page 132). The actual OC2 value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2 Register at the com-
pare match between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer clock cycle the
counter is cleared (changes from MAX to BOTTOM).

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 125

18.7.4

ATmega32A

The PWM frequency for the output can be calculated by the following equation:

~ Jak o
focnpwu = 3256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform output in
the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer
clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low output (depending on the polarity
of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to toggle
its logical level on each compare match (COM2[1:0] = 1). The waveform generated will have a maximum frequency
of foeo = foi 10/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle in CTC mode, except the dou-
ble buffer feature of the output compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode

The phase correct PWM mode (WGM2[1:0] = 1) provides a high resolution phase correct PWM waveform genera-
tion option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from
BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC2) is cleared on the compare match between TCNT2 and OCR2 while upcounting, and set on the compare
match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct PWM mode the counter is
incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count direction.
The TCNT2 value will be equal to MAX for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 18-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the
dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT2 slopes represent compare matches between OCR2 and TCNT2.

Figure 18-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

\

wn S IN AN

OCn \—‘ L (COMN1:0 = 2)
OCn ’—‘ ’—‘ F (COMN1:0 = 3)

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can be
used to generate an interrupt each time the counter reaches the BOTTOM value.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 126

18.8

ATmega32A

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COM21:0 to 3 (see Table 18-5 on page 133). The actual OC2 value will only be visible on the port pin if the data
direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2 Regis-
ter at the compare match between OCR2 and TCNT2 when the counter increments, and setting (or clearing) the
OC2 Register at compare match between OCR2 and TCNT2 when the counter decrements. The PWM frequency
for the output when using phase correct PWM can be calculated by the following equation:

_ Jaw_ o
focnpcrwm = ¥ 810

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCR?2 is set equal to BOTTOM, the output will be continuously low and if set
equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will
have the opposite logic values.

At the very start of period 2 in Figure 18-7, OCn has a transition from high to low even though there is no Compare
Match. The point of this transition is to ensure symmetry around BOTTOM. THere are two cases that give a transi-
tion without Compare Match.

* OCR2A chages its value from MAX, like in Figure 18-7. When the OCR2A value is MAX the OCn pin value is
the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the OCn
value at MAX must correspond to the result of an up-counting Compare Match.

» The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the Compare
Match and hence the OCn change that would have happened on the way up.

Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in Synchronous mode, and the timer clock (clky,) is therefore shown
as a clock enable signal. In Asynchronous mode, clk;q should be replaced by the Timer/Counter Oscillator clock.
The figures include information on when Interrupt Flags are set. Figure 18-8 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than
phase correct PWM mode.

Figure 18-8. Timer/Counter Timing Diagram, no Prescaling

clk, 0

clk,.
(clk, /1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 18-9 shows the same timing data, but with the prescaler enabled.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 127

ATmega32A

Figure 18-9. Timer/Counter Timing Diagram, with Prescaler (f; ;0/8)

clk

clk,o H
Tn
(clkI /o/ 8) T

[
i

[T
i

[
i

[

—

TCNTn

TOVn

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 18-10 shows the setting of OCF2 in all modes except CTC mode.

Figure 18-10. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (f;, 0/8)

TR AR
=) I I N,
(clk,,/8)
TCNTn B OCRn - 1 OCRn OCRn + 1 OCRn + 2
OCRn OCRn Value
OCFn

Figure 18-11 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

© 2018 Microchip Technology Inc

Data Sheet Com

plete

DS40002072A-page 128

ATmega32A

Figure 18-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler
(feik_uo/8)

e (AR
s T I T

TCNTn

(CTC) TOP -1 TOP BOTTOM BOTTOM + 1

OCRnN TOP

OCFn

18.9 Asynchronous Operation of the Timer/Counter
When Timer/Counter2 operates asynchronously, some considerations must be taken.

» Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer
Registers TCNT2, OCR2, and TCCR2 might be corrupted. A safe procedure for switching clock source is:

Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIEZ2.

Select clock source by setting AS2 as appropriate.

Write new values to TCNT2, OCR2, and TCCR2.

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

Clear the Timer/Counter2 Interrupt Flags.

. Enable interrupts, if needed.

» The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external clock to the TOSC1 pin

may result in incorrect Timer/Counter2 operation. The CPU main clock frequency must be more than four times
the Oscillator frequency.

When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is transferred to a temporary register,
and latched after two positive edges on TOSC1. The user should not write a new value before the contents of
the temporary register have been transferred to its destination. Each of the three mentioned registers have their
individual temporary register, which means for example that writing to TCNT2 does not disturb an OCR2 write in
progress. To detect that a transfer to the destination register has taken place, the Asynchronous Status Register
— ASSR has been implemented.

When entering Power-save or Extended Standby mode after having written to TCNT2, OCR2, or TCCR2, the
user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device.
Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly important if the
Output Compare2 interrupt is used to wake up the device, since the output compare function is disabled during
writing to OCR2 or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the
OCR2UB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not
wake up.

° o0k N =

If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby mode, precautions
must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to
be reset. If the time between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt
will not occur, and the device will fail to wake up. If the user is in doubt whether the time before re-entering

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 129

ATmega32A

Power-save or Extended Standby mode is sufficient, the following algorithm can be used to ensure that one
TOSC1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save or Extended Standby mode.

* When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is always running,
except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-down or Standby
mode, the user should be aware of the fact that this Oscillator might take as long as one second to stabilize.
The user is advised to wait for at least one second before using Timer/Counter2 after power-up or wake-up from
Power-down or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after a
wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no matter whether the
Oscillator is in use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or Extended Standby mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that
is, the timer is always advanced by at least one before the processor can read the counter value. After wake-up,
the MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction
following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result. Since
TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register
synchronized to the internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When
waking up from Power-save mode, and the 1/O clock (clk;5) again becomes active, TCNT2 will read as the
previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after
waking up from Power-save mode is essentially unpredictable, as it depends on the wake-up time. The
recommended procedure for reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2 or TCCR2.

2. Wait for the corresponding Update Busy Flag to be cleared.

3. Read TCNT2.

» During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer takes
three processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the

processor can read the timer value causing the setting of the Interrupt Flag. The output compare pin is changed
on the timer clock and is not synchronized to the processor clock.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 130

ATmega32A

18.10 Timer/Counter Prescaler

18.11

18.11.1

Figure 18-12. Prescaler for Timer/Counter2

clk,g —» Olky g
Clear 10-BIT T/C PRESCALER
TOSC1 —p y —_— TS =
\ ~) © « rel [N
& % |[T» |- Q o
H & & 0) o
S X |x & | F 2
AS2 °c° s |3 o
o
PSR2 0
l y v Y YVV
CS20 ;X
cs21 A
Ccs22

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clky,g. Clkyog is by default connected to the main system I/O clock
clk,o- By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This
enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are dis-
connected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an
independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. Apply-
ing an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clky,g/8, clkyo5/32, clky,5/64, clky,5/128, clk1,4/256, and
clkyog/1024. Additionally, clky,g as well as 0 (stop) may be selected. Setting the PSR2 bit in SFIOR resets the pres-
caler. This allows the user to operate with a predictable prescaler.

Register Description

TCCR2 - Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0
| Foc2 | wem20 | com21 | com20 | WGM21 Cs22 cs21 €S20 | TCCR2

Read/Write w R/W R/W RIW R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with
future devices, this bit must be set to zero when TCCR2 is written when operating in PWM mode. When writing a
logical one to the FOC2 bit, an immediate compare match is forced on the waveform generation unit. The OC2 out-
put is changed according to its COM21:0 bits setting. Note that the FOC2 bit is implemented as a strobe. Therefore
it is the value present in the COM21:0 bits that determines the effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2 as TOP.

The FOC2 bit is always read as zero.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 131

ATmega32A

¢ Bit 6, 3 - WGM2[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the Timer/Counter unit are: Normal
mode, Clear Timer on Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See
Table 18-2 and “Modes of Operation” on page 123.

Table 18-2. Waveform Generation Mode Bit Description("
WGM21 WGM20 | Timer/Counter Mode of Update of TOV2 Flag
Mode (CTC2) (PWM2) | Operation TOP OCR2 Set on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2 Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX
Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions. However, the function-

ality and location of these bits are compatible with previous versions of the timer.

¢ Bit 5:4 — COMZ2[1:0]: Compare Match Output Mode

These bits control the Output Compare pin (OC2) behavior. If one or both of the COM21:0 bits are set, the OC2
output overrides the normal port functionality of the 1/O pin it is connected to. However, note that the Data Direction
Register (DDR) bit corresponding to OC2 pin must be set in order to enable the output driver.

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21:0 bit setting. Table
18-3 shows the COM21:0 bit functionality when the WGM21:0 bits are set to a normal or CTC mode (non-PWM).

Table 18-3.

Compare Output Mode, non-PWM Mode

com21 CcOoM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Toggle OC2 on compare match
1 0 Clear OC2 on compare match
1 1 Set OC2 on compare match

Table 18-4 shows the COM2[1:0] bit functionality when the WGM21:0 bits are set to fast PWM mode.

Table 18-4. Compare Output Mode, Fast PWM Mode'"
com21 COM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on compare match, set OC2 at BOTTOM,
(non-inverting mode)
1 1 Set OC2 on compare match, clear OC2 at BOTTOM,
(inverting mode)
Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare match is ignored, but

the set or clear is done at TOP. See “Fast PWM Mode” on page 125 for more details.
Table 18-5 shows the COM2[1:0] bit functionality when the WGM21:0 bits are set to phase correct PWM mode

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 132

ATmega32A

Table 18-5. Compare Output Mode, Phase Correct PWM Mode!"
COM21 COM20 | Description

0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on compare match when up-counting. Set OC2 on compare match

when downcounting.

1 1 Set OC2 on compare match when up-counting. Clear OC2 on compare match
when downcounting.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare match is ignored, but
the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 126 for more details.

¢ Bit 2:0 — CS2[2:0]: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 18-6.

Table 18-6. Clock Select Bit Description

CS22 CS21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clky,g/(No prescaling)
0 1 0 clky25/8 (From prescaler)
0 1 1 clky,5/32 (From prescaler)
1 0 0 clky,5/64 (From prescaler)
1 0 1 clky,5/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clkyo5/1024 (From prescaler)

18.11.2 TCNT2 - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
| TCNT2[7:0]] TCnT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit
counter. Writing to the TCNT2 Register blocks (removes) the compare match on the following timer clock. Modify-
ing the counter (TCNTZ2) while the counter is running, introduces a risk of missing a compare match between
TCNT2 and the OCR2 Register.

18.11.3 OCR2 - Output Compare Register

Bit 7 6 5 4 3 2 1 0

| OCR2[7:0] | ocr2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the counter value
(TCNT2). A match can be used to generate an output compare interrupt, or to generate a waveform output on the
OC2 pin.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 133

ATmega32A

18.11.4 ASSR - Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0

| - | = | = | - | As2 TCN2UB | OCR2UB | TCR2UB | AssR
Read/Write R R R R R/W R R R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 3 — AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the 1/O clock, clk;,o. When AS2 is written to one,
Timer/Counter2 is clocked from a Crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the
value of AS2 is changed, the contents of TCNT2, OCR2, and TCCR2 might be corrupted.

¢ Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates
that TCNT2 is ready to be updated with a new value.

* Bit 1 — OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR?2 is written, this bit becomes set. When OCR2 has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that
OCR?2 is ready to be updated with a new value.

* Bit 0 —- TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes set. When TCCR2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates
that TCCR2 is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is set, the updated
value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading TCNT2, the actual timer
value is read. When reading OCR2 or TCCR2, the value in the temporary storage register is read.

18.11.5 TIMSK - Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
| ocie2 | ToIE2 | TICIE1 | OCIE1A | OCIE1B TOIE1 OCIEO TOIE0 | TIMsK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare
Match interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs,
that is, when the OCF2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

* Bit 6 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Overflow
interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, that is, when
the TOV2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 134

ATmega32A

18.11.6 TIFR - Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocF2 | TOV2 | ICF1 | OCF1A | OCF1B TOV1 OCF0 Tovo | TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2 —
Output Compare Register2. OCF2 is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, OCF2 is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2
(Timer/Counter2 Compare match Interrupt Enable), and OCF2 are set (one), the Timer/Counter2 Compare match
Interrupt is executed.

¢ Bit 6 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag.
When the SREG I-bit, TOIE2 (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes count-
ing direction at $00.

18.11.7 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0
| Abts2 | ADTs1 | ADTso | = ACME PUD PSR2 PSR10 | SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 1 — PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be cleared by hardware after
the operation is performed. Writing a zero to this bit will have no effect. This bit will always be read as zero if
Timer/Counter2 is clocked by the internal CPU clock. If this bit is written when Timer/Counter2 is operating in asyn-
chronous mode, the bit will remain one until the prescaler has been reset.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 135

ATmega32A

19. SPI - Serial Peripheral Interface

19.1

19.2

Features

* Full-duplex, Three-wire Synchronous Data Transfer
* Master or Slave Operation

* LSB First or MSB First Data Transfer

* Seven Programmable Bit Rates

* End of Transmission Interrupt Flag

* Write Collision Flag Protection

* Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the ATmega32A and
peripheral devices or between several AVR devices.

Figure 19-1. SPI Block Diagram("

MISO
y pso
M MosSI
XTAL MSB LSB O -
oo e < s O
l 8 BIT SHIFT REGISTER S
READ DATA BUFFER 3
DIVIDER ¥
/2/4/8/16/32/64/128 E
o)
o
Yy v VvV Vv C =z
SPI CLOCK (MASTER) cLogk T
SELECT CLOCK s SCK
LOGIC oM
><“_ IS X X 'y _
o x| SS
HE =]
x [m]
=l owl X
25 8
4MSTR
SPI CONTROL «SPE
1 Qo x d < < o
(o]
B O S ol £l & 8 & g & & §
0 = ‘% n| » o = O O u ®
A A
[SPI STATUS REGISTER | [SPI CONTROL REGISTER
. 8 8,

v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Figure 1-1 on page 10, and Table 13-6 on page 64 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2. The system consists of two
Shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low
the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective Shift

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 136

ATmega32A

Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always
shifted from Master to Slave on the Master Out — Slave In, MOS], line, and from Slave to Master on the Master In —
Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave
Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by
user software before communication can start. When this is done, writing a byte to the SPI Data Register starts the
SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gen-
erator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR
Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer
Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO ftri-stated as long as the Ss pin is
driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not
be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been com-
pletely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR
Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR before
reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 19-2. SPI Master-slave Interconnection
MSB MASTER LSB ' MSB SLAVE LSB
| MISO MISO|
T 8 BIT SHIFT REGISTER |—<«—————<«—{ 8BIT SHIFT REGISTER T

> A i MOSI MOSI' o A A
| | »
SHIFT
SPI pe » SCK SCKi ENABLE
CLOCK GENERATOR | > — —
o SS SS:
o !

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that
bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When
receiving data, however, a received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of
the clock signal, the minimum low and high periods should be:

Low periods: longer than 2 CPU clock cycles.
High periods: longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to
Table 19-1. For more details on automatic port overrides, refer to “Alternate Port Functions” on page 61.

Table 19-1. SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

sSs User Defined Input

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 137

ATmega32A

Note: See “Alternate Port Functions” on page 61 for a detailed description of how to define the direction of the user
defined SPI pins.

The following code examples show how to initialize the SPI as a master and how to perform a simple transmission.

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.

DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example

if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Assembly Code Example!")

SPI_MasterInit:
; Set MOSI and SCK output, all others input
1di 117, (1<<DD_MOSI) | (1<<DD_SCK)
out DDR_SPI,rl7
; Enable SPI, Master, set clock rate fck/16
1di 1rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR,rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rlé)
out SPDR,rlé6

Wait_Transmit:
; Wait for transmission complete
sbis SPSR,SPIF
rjmp Wait Transmit

ret

C Code Example!"

void SPI_MasterInit (void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI MasterTransmit (char cData)
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. See “About Code Examples” on page 14.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 138

ATmega32A

The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example!")

SPI_SlaveInit:
; Set MISO output, all others input
1di r17, (1<<DD_MISO)
out DDR SPI,rl7
; Enable SPI
1di rl17, (1<<SPE)
out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rlé6, SPDR

ret

C Code Example"

void SPI SlavelInit (void)

{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);
}

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return data register */

return SPDR;

Note: 1. See “About Code Examples” on page 14.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 139

19.3

19.3.1

19.3.2

19.3.3

ATmega32A

SS Pin Functionality

Slave Mode
When the SPI is configured as a Slave, the Slave Select (S_S) pin is always input. When SS is held low, the SPI is
activated, and MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven
high, all pins are inputs except MISO which can be user configured as an output, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master
clock generator. When the SS pin is driven high, the SPI Slave will immediately reset the send and receive logic,
and drop any partially received data in the Shift Register.

Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the
pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven low by
peripheral circuitry when the SPI is configured as a Master with the SS pin defined as an input, the SPI system
interprets this as another master selecting the SPI as a slave and starting to send data to it. To avoid bus conten-
tion, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming
a slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSRis set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt
routine will be executed.

Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possibility that SSis
driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a
slave select, it must be set by the user to re-enable SPI master mode.

SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0
| spE | sPE | DORD MSTR CPOL CPHA SPR1 SPRO | SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if the global interrupt
enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

¢ Bit 5 - DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 140

ATmega32A

¢ Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If SS is config-
ured as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set.
The user will then have to set MSTR to re-enable SPI Master mode.

¢ Bit 3 - CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle. Refer

to Figure 19-3 and Figure 19-4 for an example. The CPOL functionality is summarized below:

Table 19-2. CPOL Functionality
CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge
of SCK. Refer to Figure 19-3 and Figure 19-4 for an example. The CPHA functionality is summarized below:

Table 19-3. CPHA Functionality
CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

¢ Bits 1, 0 - SPR1, SPRO0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have no effect on the
Slave. The relationship between SCK and the Oscillator Clock frequency f . is shown in the following table:

Table 19-4. Relationship Between SCK and the Oscillator Frequency
SPI2X SPR1 SPRO SCK Frequency
0 0 0 foo/4
0 0 1 fooc/16
0 1 0 fos/64
0 1 1 fooc/128
1 0 0 fos/2
1 0 1 fosc/8
1 1 0 foe/32
1 1 1 f.oo/64
SPSR - SPI Status Register
Bit 7 6 5 4 3 2 1 0
| spF | weoL | - - SPI2X | SPSR
Read/Write R R R R RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and global
interrupts are enabled. If SS is an input and is driven low when the SPl is in Master mode, this will also set the SPIF

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 141

19.3.5

19.4

ATmega32A

Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the
SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing the SPI Data Register
(SPDR).

¢ Bit 6 — WCOL: Write COLlIision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF
bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data Register.

* Bit 5:1 — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master mode
(see Table 19-4). This means that the minimum SCK period will be two CPU clock periods. When the SPI is config-
ured as Slave, the SPI is only ensured to work at f,./4 or lower.

The SPI interface on the ATmega32A is also used for program memory and EEPROM downloading or uploading.
See “SPI Serial Downloading” on page 269 for SPI Serial Programming and Verification.

SPDR - SPI Data Register

Bit 7 6 5 4 3 2 1 0
| wsB | | LsB | sPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift
Register. Writing to the register initiates data transmission. Reading the register causes the Shift Register Receive
buffer to be read.

Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control
bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 19-3 and Figure 19-4. Data bits are
shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize.
This is clearly seen by summarizing Table 19-2 and Table 19-3, as done below:

Table 19-5. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode
CPOL=0,CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0,CPHA =1 Setup (Rising) Sample (Falling) 1
CPOL=1,CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL =1, CPHA =1 Setup (Falling) Sample (Rising) 3

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 142

ATmega32A

Figure 19-3. SPI Transfer Format with CPHA =0

[~ sck (cPoL=0)

mode 0

SCK (CPOL=1)""]
mode 2

L
[

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

=

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

HoLH
A A

L L) L] L L
SEEEEEEEEE
H K H_
A A

A
3

Sl

//H/

Figure 19-4. SPI Transfer Format with CPHA =1

e [[
Eaminl
DC

¥

SAMPLE |
MOSI/MISO

H
H

CHANGE 0
MISO PIN

SEEEEEEREENN
BEREREEnEEE.
LN H_ H
H_H HO KK

CHANGE 0 \ <
MOSI PIN

\\l/\‘

=

MSB first (DORD = 0) MSB Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit4 Bit5 Bit 6 MSB

A

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 143

ATmega32A

20. USART

20.1

20.2

Features

Full Duplex Operation (Independent Serial Receive and Transmit Registers)
Asynchronous or Synchronous Operation

Master or Slave Clocked Synchronous Operation

High Resolution Baud Rate Generator

Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
Odd or Even Parity Generation and Parity Check Supported by Hardware
Data OverRun Detection

Framing Error Detection

Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
Three Separate Interrupts on TX Complete, TX Data Register Empty, and RX Complete
Multi-processor Communication Mode

Double Speed Asynchronous Communication Mode

Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial
communication device. A simplified block diagram of the USART transmitter is shown in Figure 20-1. CPU accessi-
ble 1/0 Registers and I/O pins are shown in bold.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 144

20.21

ATmega32A

Figure 20-1. USART Block Diagram'"

PARITY
CHECKER

UDR (Receive)

C *77777777777776I;ck76€n;ra70r7
} UBRRIH:L] osc }
\ ¥ \
\
| BAUD RATE GENERATOR | }
\ |
y
‘ SYNC LOGIC PIN \
‘ y »| conTROL [*1 XCK
| |
}7 - 0T - — — — — — & - T T T T T T = e
| Transmltteﬁ‘
\ UDR (Transmit) CONT?ROL \
| " PARITY ‘
" \ GENERATOR |
! I TRANSMIT SHIFT REGISTER PIN Lyl <0
o| | CONTROL ‘
nd o |
g Yt ~ Receiver|
‘ CLOCK RX
\ RECOVERY CONTROL
\
\
pATA | PIN P
\ RECEIVE SHIFT REGISTER RECOVERY CONTROL RxD
\
‘ y
\
\

I 3

Note: 1. Refer to Figure 1-1 on page 10, Table 13-14 on page 70, and Table 13-8 on page 66 for USART pin placement.
The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): Clock
Generator, Transmitter and Receiver. Control Registers are shared by all units. The clock generation logic consists
of synchronization logic for external clock input used by synchronous slave operation, and the baud rate generator.
The XCK (Transfer Clock) pin is only used by Synchronous Transfer mode. The Transmitter consists of a single
write buffer, a serial Shift Register, parity generator and control logic for handling different serial frame formats.
The write buffer allows a continuous transfer of data without any delay between frames. The Receiver is the most
complex part of the USART module due to its clock and data recovery units. The recovery units are used for asyn-
chronous data reception. In addition to the recovery units, the receiver includes a parity checker, control logic, a
Shift Register and a two level receive buffer (UDR). The receiver supports the same frame formats as the transmit-
ter, and can detect frame error, data overrun and parity errors.

AVR USART vs. AVR UART - Compatibility
The USART is fully compatible with the AVR UART regarding:
« Bit locations inside all USART Registers
* Baud Rate Generation
 Transmitter Operation
 Transmit Buffer Functionality

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 145

20.3

ATmega32A

* Receiver Operation
However, the receive buffering has two improvements that will affect the compatibility in some special cases:

A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO buffer.
Therefore the UDR must only be read once for each incoming data! More important is the fact that the Error
Flags (FE and DOR) and the 9th data bit (RXB8) are buffered with the data in the receive buffer. Therefore the
status bits must always be read before the UDR Register is read. Otherwise the error status will be lost since
the buffer state is lost.

» The receiver Shift Register can now act as a third buffer level. This is done by allowing the received data to
remain in the serial Shift Register (see Figure 20-1) if the Buffer Registers are full, until a new start bit is
detected. The USART is therefore more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

* CHRO is changed to UCSZ2
* OR is changed to DOR

Clock Generation

The clock generation logic generates the base clock for the Transmitter and Receiver. The USART supports four
modes of clock operation: Normal Asynchronous, Double Speed Asynchronous, Master Synchronous and Slave
Synchronous mode. The UMSEL bit in USART Control and Status Register C (UCSRC) selects between asyn-
chronous and synchronous operation. Double Speed (Asynchronous mode only) is controlled by the U2X found in
the UCSRA Register. When using Synchronous mode (UMSEL = 1), the Data Direction Register for the XCK pin
(DDR_XCK) controls whether the clock source is internal (Master mode) or external (Slave mode). The XCK pin is
only active when using Synchronous mode.

Figure 20-2 shows a block diagram of the clock generation logic.

Figure 20-2. Clock Generation Logic, Block Diagram

UBRR
u2x
fosc

Prescaling UBRR+1 ‘ ‘ ‘
Down-Counter > /2 i 2 1o
A 1
OsSC — txclk
DDR_XCK
Y ;
Sync - Edge o
xcki Register | Detector 1o
XCK 7y UMSEL
Pin =xcko - 1
DDR_XCK UCPOL
rxclk

Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki Input from XCK pin (Internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 146

20.3.1

20.3.2

20.3.3

ATmega32A

fosc XTAL pin frequency (System Clock).

Internal Clock Generation — The Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of operation. The
description in this section refers to Figure 20-2.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a programmable pres-
caler or baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRR value
each time the counter has counted down to zero or when the UBRRL Register is written. A clock is generated each
time the counter reaches zero. This clock is the baud rate generator clock output (= fosc/(UBRR+1)). The Trans-
mitter divides the baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator
output is used directly by the receiver’s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the UMSEL, U2X and DDR_XCK bits.

Table 20-1 contains equations for calculating the baud rate (in bits per second) and for calculating the UBRR value
for each mode of operation using an internally generated clock source.

Table 20-1. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Equation for Calculating
Operating Mode Baud Rate!") UBRR Value
(AJ%/)rlc:rOo)nous Normal Mode BAUD - fosc UBRR - fosc »
16(UBRR +1) 16B4UD
Asynchronous Double Speed Mode (U2X
= 1) BAUD=W£+§+1) UBRR=8£Z—SSD—
Synchronous Master Mode BAUD — fOSC UBRR - fOSC B
2(UBRR+1) 2BAUD
Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)

Some examples of UBRR values for some system clock frequencies are found in “Examples of Baud Rate Setting”
on page 167 (Table 20-9 to Table 20-12).

Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the asynchro-
nous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for
asynchronous communication. Note however that the receiver will in this case only use half the number of samples
(reduced from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no downsides.

External Clock
External clocking is used by the synchronous slave modes of operation. The description in this section refers to
Figure 20-2 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of meta-sta-
bility. The output from the synchronization register must then pass through an edge detector before it can be used

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 147

20.3.4

20.4

ATmega32A

by the Transmitter and receiver. This process introduces a two CPU clock period delay and therefore the maximum
external XCK clock frequency is limited by the following equation:
fosc
fxek < 4
Note that f .. depends on the stability of the system clock source. It is therefore recommended to add some margin
to avoid possible loss of data due to frequency variations.

Synchronous Clock Operation
When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or clock out-
put (Master). The dependency between the clock edges and data sampling or data change is the same. The basic
principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Figure 20-3. Synchronous Mode XCK Timing.

UCPOL =1 XCK (‘

RxD / TxD *
L Sample
UCPOL=0 XCK / W\—/
RxD / TxD *
L Sample

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is used for data
change. As Figure 20-3 shows, when UCPOL is zero the data will be changed at rising XCK edge and sampled at
falling XCK edge. If UCPOL is set, the data will be changed at falling XCK edge and sampled at rising XCK edge.

Frame Formats
A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and option-
ally a parity bit for error checking. The USART accepts all 30 combinations of the following as valid frame formats:
+ 1 start bit
*5,6,7,8, or 9 data bits
* no, even or odd parity bit
* 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits, up to a total of
nine, are succeeding, ending with the most significant bit. If enabled, the parity bit is inserted after the data bits,
before the stop bits. When a complete frame is transmitted, it can be directly followed by a new frame, or the com-
munication line can be set to an idle (high) state. Figure 20-4 illustrates the possible combinations of the frame
formats. Bits inside brackets are optional.

Figure 20-4. Frame Formats
% FRAME >}

(IDLE) \ St/ 0 >< 1 >< 2 >< 3 >< 4 ><[5]>< [6]>< [7]>< [8]><[P]/Sp1 [Sp2]\ (St/IDLE)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 148

20.4.1

20.5

ATmega32A

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0, and USBS bits in UCSRB and UCSRC. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these bits will corrupt all
ongoing communication for both the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame. The USART Parity mode
(UPM1:0) bits enable and set the type of parity bit. The selection between one or two stop bits is done by the
USART Stop Bit Select (USBS) bit. The receiver ignores the second stop bit. An FE (Frame Error) will therefore
only be detected in the cases where the first stop bit is zero.

Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclu-
sive or is inverted. The relation between the parity bit and data bits is as follows::
oven =4, 19..0d3®@dy, ®d;®dy®0
Poyg=d, 19..0d;30d, ®d;®dy® 1

Peven Parity bit using even parity
Podd Parity bit using odd parity
d Data bit n of the character

n

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

USART Initialization

The USART has to be initialized before any communication can take place. The initialization process normally con-
sists of setting the baud rate, setting frame format and enabling the Transmitter or the Receiver depending on the
usage. For interrupt driven USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no ongoing transmis-
sions during the period the registers are changed. The TXC Flag can be used to check that the Transmitter has
completed all transfers, and the RXC Flag can be used to check that there are no unread data in the receive buffer.
Note that the TXC Flag must be cleared before each transmission (before UDR is written) if it is used for this
purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal in
functionality. The examples assume asynchronous operation using polling (no interrupts enabled) and a fixed
frame format. The baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers. When the function writes to the UCSRC Register, the URSEL bit
(MSB) must be set due to the sharing of 1/0 location by UBRRH and UCSRC.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 149

20.6

20.6.1

ATmega32A

Assembly Code Example!”

USART Init:
; Set baud rate
out UBRRH, rl7
out UBRRL, rl6
; Enable receiver and transmitter
1di 116, (1<<RXEN) | (1<<TXEN)
out UCSRB,rlé6
; Set frame format: 8data, 2stop bit
1di 116, (1<<URSEL) | (1<<USBS) | (3<<UCSZ0)
out UCSRC,rlé6

ret

C Code Example!"

void USART Init(unsigned int baud)

{

/* Set baud rate */

UBRRH = (unsigned char) (baud>>8) ;

UBRRL = (unsigned char)baud;

/* Enable receiver and transmitter */

UCSRB = (1<<RXEN) | (1<<TXEN) ;

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<URSEL) | (1<<USBS) | (3<<UCSZ0) ;
}

Note: 1. See “About Code Examples” on page 14.

More advanced initialization routines can be made that include frame format as parameters, disable interrupts and
so on. However, many applications use a fixed setting of the Baud and Control Registers, and for these types of
applications the initialization code can be placed directly in the main routine, or be combined with initialization code
for other 1/0O modules.

Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB Register. When the
Transmitter is enabled, the normal port operation of the TxD pin is overridden by the USART and given the function
as the transmitter’s serial output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCK pin will be overridden and used
as transmission clock.

Sending Frames with 5 to 8 Data Bit
A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load the
transmit buffer by writing to the UDR 1/O location. The buffered data in the transmit buffer will be moved to the Shift
Register when the Shift Register is ready to send a new frame. The Shift Register is loaded with new data if it is in
idle state (no ongoing transmission) or immediately after the last stop bit of the previous frame is transmitted. When
the Shift Register is loaded with new data, it will transfer one complete frame at the rate given by the Baud Regis-
ter, U2X bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the Data Register Empty
(UDRE) Flag. When using frames with less than eight bits, the most significant bits written to the UDR are ignored.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 150

20.6.2

ATmega32A

The USART has to be initialized before the function can be used. For the assembly code, the data to be sent is

assumed to be stored in Register R16.

Assembly Code Example!")

USART_ Transmit:
; Wait for empty transmit buffer

sbis UCSRA, UDRE

rjmp USART Transmit

; Put data (rl6) into buffer, sends the data

out TUDR,rlé6

ret

C Code Example!"

void USART Transmit (unsigned char data)

{
/* Wait for empty transmit buffer */
while (! (UCSRA & (1<<UDRE)))
/* Put data into buffer, sends the data */
UDR = data;

Note: 1. See “About Code Examples” on page 14.

The function simply waits for the transmit buffer to be empty by checking the UDRE Flag, before loading it with new
data to be transmitted. If the Data Register Empty Interrupt is utilized, the interrupt routine writes the data into the

buffer.

Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in UCSRB before the low byte
of the character is written to UDR. The following code examples show a transmit function that handles 9-bit charac-
ters. For the assembly code, the data to be sent is assumed to be stored in Registers R17:R16.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 151

20.6.3

ATmega32A

Assembly Code Example!")

USART Transmit:
; Wait for empty transmit buffer
sbis UCSRA, UDRE
rjmp USART Transmit
; Copy 9th bit from rl7 to TXBS8
cbi UCSRB, TXBS8
sbrc rl17,0
sbi UCSRB, TXB8
; Put LSB data (rlé6) into buffer, sends the data
out TUDR,rlé6

ret

C Code Example"

void USART Transmit (unsigned int data)
{
/* Wait for empty transmit buffer */
while (! (UCSRA & (1<<UDRE))))
/* Copy 9th bit to TXB8 */
UCSRB &= ~ (1<<TXB8) ;
if (data & 0x0100)
UCSRB |= (1<<TXB8);
/* Put data into buffer, sends the data */
UDR = data;

Note: 1. These transmit functions are written to be general functions. They can be optimized if the contents of the UCSRB is
static (that is, only the TXB8 bit of the UCSRB Register is used after initialization).

The ninth bit can be used for indicating an address frame when using multi processor communication mode or for

other protocol handling as for example synchronization.

Transmitter Flags and Interrupts
The USART transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and Transmit
Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive new data. This bit
is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted that
has not yet been moved into the Shift Register. For compatibility with future devices, always write this bit to zero
when writing the UCSRA Register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is written to one, the USART Data Register
Empty Interrupt will be executed as long as UDRE is set (provided that global interrupts are enabled). UDRE is
cleared by writing UDR. When interrupt-driven data transmission is used, the Data Register Empty Interrupt routine
must either write new data to UDR in order to clear UDRE or disable the Data Register empty Interrupt, otherwise
a new interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer. The TXC Flag bit is automatically
cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 152

20.6.4

20.6.5

20.7

20.71

ATmega32A

TXC Flag is useful in half-duplex communication interfaces (like the RS485 standard), where a transmitting
application must enter receive mode and free the communication bus immediately after completing the
transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART Transmit Complete Inter-
rupt will be executed when the TXC Flag becomes set (provided that global interrupts are enabled). When the
transmit complete interrupt is used, the interrupt handling routine does not have to clear the TXC Flag, this is done
automatically when the interrupt is executed.

Parity Generator
The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPM1 = 1), the
transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is sent.

Disabling the Transmitter
The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing and pending
transmissions are completed, that is, when the transmit Shift Register and transmit Buffer Register do not contain
data to be transmitted. When disabled, the transmitter will no longer override the TxD pin.

Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRB Register to one. When
the receiver is enabled, the normal pin operation of the RxD pin is overridden by the USART and given the function
as the receiver’s serial input. The baud rate, mode of operation and frame format must be set up once before any
serial reception can be done. If synchronous operation is used, the clock on the XCK pin will be used as transfer
clock.

Receiving Frames with 5 to 8 Data Bits
The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled
at the baud rate or XCK clock, and shifted into the receive Shift Register until the first stop bit of a frame is
received. A second stop bit will be ignored by the receiver. When the first stop bit is received, that is, a complete
serial frame is present in the receive Shift Register, the contents of the Shift Register will be moved into the receive
buffer. The receive buffer can then be read by reading the UDR I/O location.

The following code example shows a simple USART receive function based on polling of the Receive Complete
(RXC) Flag. When using frames with less than eight bits the most significant bits of the data read from the UDR will
be masked to zero. The USART has to be initialized before the function can be used.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 153

20.7.2

ATmega32A

Assembly Code Example!")

USART Receive:
; Wait for data to be received
sbis UCSRA, RXC
rjmp USART Receive
; Get and return received data from buffer
in rlé6, UDR
ret

C Code Example!"

unsigned char USART Receive(void)
{
/* Wait for data to be received */
while (! (UCSRA & (1<<RXC)))
/* Get and return received data from buffer */

return UDR;

}

Note: 1. See “About Code Examples” on page 14.

The function simply waits for data to be present in the receive buffer by checking the RXC Flag, before reading the

buffer and returning the value.

Receiving Frames with 9 Databits

If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB before reading the
low bits from the UDR. This rule applies to the FE, DOR and PE Status Flags as well. Read status from UCSRA,
then data from UDR. Reading the UDR 1/O location will change the state of the receive buffer FIFO and conse-

quently the TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both 9-bit characters and the

status bits.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 154

ATmega32A

Assembly Code Example!")

USART Receive:
; Wait for data to be received
sbis UCSRA, RXC
rjmp USART Receive
; Get status and 9th bit, then data from buffer
in rl8, UCSRA
in rl7, UCSRB
in rlé6, UDR
; If error, return -1
andi rl8, (1<<FE) | (1<<DOR) | (1<<PE)
breq USART ReceiveNoError
1di r17, HIGH(-1)
1di rle6, LOW(-1)
USART_ ReceiveNoError:
; Filter the 9th bit, then return
lsr rl17
andi rl7, 0x01

ret

C Code Example!"

unsigned int USART Receive(void)

{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSRA & (1<<RXC)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRA;

UCSRB;

resl = UDR;

resh

/* If error, return -1 */

if (status & (1<<FE) | (1<<DOR) | (1<<PE))
return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. See “About Code Examples” on page 14.

The receive function example reads all the 1/0 Registers into the Register File before any computation is done.
This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as early

as possible.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 155

20.7.3

20.7.4

20.7.5

20.7.6

ATmega32A

Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buffer. This flag is one
when unread data exist in the receive buffer, and zero when the receive buffer is empty (that is, does not contain
any unread data). If the receiver is disabled (RXEN = 0), the receive buffer will be flushed and consequently the
RXC bit will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive Complete Interrupt
will be executed as long as the RXC Flag is set (provided that global interrupts are enabled). When interrupt-driven
data reception is used, the receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR) and Parity Error (PE). All can
be accessed by reading UCSRA. Common for the Error Flags is that they are located in the receive buffer together
with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the UCSRA must be
read before the receive buffer (UDR), since reading the UDR 1/O location changes the buffer read location. Another
equality for the Error Flags is that they can not be altered by software doing a write to the flag location. However, all
flags must be set to zero when the UCSRA is written for upward compatibility of future USART implementations.
None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable frame stored in the receive
buffer. The FE Flag is zero when the stop bit was correctly read (as one), and the FE Flag will be one when the
stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions
and protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC since the receiver
ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero when writ-
ing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun occurs
when the receive buffer is full (two characters), it is a new character waiting in the receive Shift Register, and a new
start bit is detected. If the DOR Flag is set there was one or more serial frame lost between the frame last read
from UDR, and the next frame read from UDR. For compatibility with future devices, always write this bit to zero
when writing to UCSRA. The DOR Flag is cleared when the frame received was successfully moved from the Shift
Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity error when received. If
parity check is not enabled the PE bit will always be read zero. For compatibility with future devices, always set this
bit to zero when writing to UCSRA. For more details see “Parity Bit Calculation” on page 149 and “Parity Checker”
on page 156.

Parity Checker
The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type of parity check to be per-
formed (odd or even) is selected by the UPMO bit. When enabled, the parity checker calculates the parity of the
data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of the
check is stored in the receive buffer together with the received data and stop bits. The Parity Error (PE) Flag can
then be read by software to check if the frame had a parity error.

The PE bit is set if the next character that can be read from the receive buffer had a parity error when received and
the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read.

Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will there-
fore be lost. When disabled (that is, the RXEN is set to zero) the Receiver will no longer override the normal

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 156

20.7.7

20.8

20.8.1

ATmega32A

function of the RxD port pin. The receiver buffer FIFO will be flushed when the receiver is disabled. Remaining data
in the buffer will be lost.

Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its con-
tents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error
condition, read the UDR I/O location until the RXC Flag is cleared. The following code example shows how to flush
the receive buffer.

Assembly Code Example!"

USART Flush:
sbis UCSRA, RXC
ret
in rle, UDR
rjmp USART Flush

C Code Example!"

void USART Flush(void)

{

unsigned char dummy;

while (UCSRA & (1<<RXC)) dummy = UDR;

}

Note: 1. See “About Code Examples” on page 14.

Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The
clock recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchro-
nous serial frames at the RxD pin. The data recovery logic samples and low pass filters each incoming bit, thereby
improving the noise immunity of the receiver. The asynchronous reception operational range depends on the accu-
racy of the internal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 20-5 illustrates the sam-
pling process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for Normal mode, and
8 times the baud rate for Double Speed mode. The horizontal arrows illustrate the synchronization variation due to
the sampling process. Note the larger time variation when using the double speed mode (U2X = 1) of operation.
Samples denoted zero are samples done when the RxD line is idle (that is, no communication activity).

Figure 20-5. Start Bit Sampling

RxD IDLE START BITO
smpe | | Dbt TS Pttt
(U2X = 0) o o 1 2 3 4 5 6 7 [8][9[10]1 12 13 14 15 16 1 2 3
Sample T H—t—ﬂ T T T T T
(U2x = 1) 0 1 2 3 7 8 1 2

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the start bit detection
sequence is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock recovery logic
then uses samples 8, 9, and 10 for Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with
sample numbers inside boxes on the figure), to decide if a valid start bit is received. If two or more of these three

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 157

20.8.2

20.8.3

ATmega32A

samples have logical high levels (the majority wins), the start bit is rejected as a noise spike and the receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recovery logic is syn-
chronized and the data recovery can begin. The synchronization process is repeated for each start bit.

Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery unit uses a
state machine that has 16 states for each bit in normal mode and 8 states for each bit in Double Speed mode. Fig-
ure 20-6 shows the sampling of the data bits and the parity bit. Each of the samples is given a number that is equal
to the state of the recovery unit.

Figure 20-6. Sampling of Data and Parity Bit

RxD BITn

Sample }41’{ T
2

(U2X = 0) 1

r
e b

(U2x = 1) 1

The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to the three
samples in the center of the received bit. The center samples are emphasized on the figure by having the sample
number inside boxes. The majority voting process is done as follows: If two or all three samples have high levels,
the received bit is registered to be a logic 1. If two or all three samples have low levels, the received bit is regis-
tered to be a logic 0. This majority voting process acts as a low pass filter for the incoming signal on the RxD pin.
The recovery process is then repeated until a complete frame is received. Including the first stop bit. Note that the
receiver only uses the first stop bit of a frame.

Figure 20-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit of the next frame.

Figure 20-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP 1 (A) ®) ©
Sample Pi’{ T T T T
(U2X = 0) 12 4 6 (8 [9 [10]ot ot on

1
P L d b

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop bit is registered to
have a logic 0 value, the Frame Error (FE) Flag will be set.

f
Sample }‘_T_’{ I

(U2x = 1) 1

A new high to low transition indicating the start bit of a new frame can come right after the last of the bits used for
majority voting. For Normal Speed mode, the first low level sample can be at point marked (A) in Figure 20-7. For
Double Speed mode the first low level must be delayed to (B). (C) marks a stop bit of full length. The early start bit
detection influences the operational range of the receiver.

Asynchronous Operational Range
The operational range of the receiver is dependent on the mismatch between the received bit rate and the inter-
nally generated baud rate. If the Transmitter is sending frames at too fast or too slow bit rates, or the internally

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 158

ATmega32A

generated baud rate of the receiver does not have a similar (see Table 20-2) base frequency, the receiver will not
be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal receiver baud rate.
R _ (D+1)S
slow S—1+D-S+8S,
R, = (D+2)S
Jast— (D+1)S+S,,

Sum of character size and parity size (D = 5 to 10 bit)

Samples per bit. S = 16 for Normal Speed mode and S = 8 for
Double Speed mode.

S¢ First sample number used for majority voting. Sg = 8 for Normal Speed and
Sg = 4 for Double Speed mode.
Su Middle sample number used for majority voting. Sy, = 9 for Normal Speed and
Sy = 5 for Double Speed mode.
Rsiow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 20-2 and Table 20-3 list the maximum receiver baud rate error that can be tolerated. Note that Normal
Speed mode has higher toleration of baud rate variations.

Table 20-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X = 0)

D Max Total Error | Recommended Max Receiver
(Data+Parity Bit) Rgiow (%) R¢.st(%) (%) Error (%)
5 93.20 106.67 +6.67/-6.8 $3.0
6 94.12 105.79 +5.79/-5.88 2.5
7 94.81 105.11 +5.11/-5.19 2.0
8 95.36 104.58 +4.58/-4.54 2.0
9 95.81 104.14 +4.14/-4.19 1.5
10 96.17 103.78 +3.78/-3.83 1.5

Table 20-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X = 1)

D Max Total Error | Recommended Max Receiver
(Data+Parity Bit) Reiow (%) | Riast (%) (%) Error (%)
5 94.12 105.66 +5.66/-5.88 2.5
6 94.92 104.92 +4.92/-5.08 2.0
7 95.52 104.35 +4.35/-4.48 1.5
8 96.00 103.90 +3.90/-4.00 1.5
9 96.39 103.53 +3.53/-3.61 1.5
10 96.70 103.23 +3.23/-3.30 1.0

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 159

20.9

20.9.1

ATmega32A

The recommendations of the maximum receiver baud rate error was made under the assumption that the receiver
and transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system clock (XTAL) will always
have some minor instability over the supply voltage range and the temperature range. When using a crystal to gen-
erate the system clock, this is rarely a problem, but for a resonator the system clock may differ more than 2%
depending of the resonators tolerance. The second source for the error is more controllable. The baud rate gener-
ator can not always do an exact division of the system frequency to get the baud rate wanted. In this case an
UBRR value that gives an acceptable low error can be used if possible.

Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering function of incoming
frames received by the USART Receiver. Frames that do not contain address information will be ignored and not
put into the receive buffer. This effectively reduces the number of incoming frames that has to be handled by the
CPU, in a system with multiple MCUs that communicate via the same serial bus. The Transmitter is unaffected by
the MPCM setting, but has to be used differently when it is a part of a system utilizing the Multi-processor Commu-
nication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if the frame
contains data or address information. If the receiver is set up for frames with nine data bits, then the ninth bit
(RXB8) is used for identifying address and data frames. When the frame type bit (the first stop or the ninth bit) is
one, the frame contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a master MCU. This
is done by first decoding an address frame to find out which MCU has been addressed. If a particular Slave MCU
has been addressed, it will receive the following data frames as normal, while the other slave MCUs will ignore the
received frames until another address frame is received.

Using MPCM
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZ = 7). The ninth bit (TXB8)
must be set when an address frame (TXB8 = 1) or cleared when a data frame (TXB = 0) is being transmitted. The
slave MCUs must in this case be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communication mode:

1. All slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA is set).
2. The Master MCU sends an address frame, and all slaves receive and read this frame. In the Slave MCUs,
the RXC Flag in UCSRA will be set as normal.
3. Each Slave MCU reads the UDR Register and determines if it has been selected. If so, it clears the
MPCM bit in UCSRA, otherwise it waits for the next address byte and keeps the MPCM setting.
4. The addressed MCU will receive all data frames until a new address frame is received. The other slave
MCUs, which still have the MPCM bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets the MPCM bit and
waits for a new address frame from Master. The process then repeats from 2.
Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the receiver must change
between using n and n+1 character frame formats. This makes full-duplex operation difficult since the transmitter
and receiver uses the same character size setting. If 5-bit to 8-bit character frames are used, the transmitter must
be set to use two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The MPCM bit shares the
same /O location as the TXC Flag and this might accidentally be cleared when using SBI or CBI instructions.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 160

ATmega32A

20.10 Accessing UBRRH/UCSRC Registers

The UBRRH Register shares the same 1/O location as the UCSRC Register. Therefore some special consideration

must be taken when accessing this I/O location.

20.10.1 Write Access

When doing a write access of this 1/0 location, the high bit of the value written, the USART Register Select
(URSEL) bit, controls which one of the two registers that will be written. If URSEL is zero during a write operation,

the UBRRH value will be updated. If URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Assembly Code Example!"

; Set UBRRH to 2
1ldirle, 0x02
out UBRRH, rl6

; Set the USBS and the UCSZ1 bit to one, and
; the remaining bits to zero.
1di rl6, (1<<URSEL) | (1<<USBS) | (1<<UCSZ1)

out UCSRC, rl6

C Code Example!")

/* Set UBRRH to 2 */
UBRRH = 0x02;

/* Set the USBS and the UCSZ1 bit to one, and */
/* the remaining bits to zero. */

UCSRC = (1<<URSEL) | (1<<USBS) | (1<<UCSZ1) ;

Note: 1. See “About Code Examples” on page 14.

As the code examples illustrate, write accesses of the two registers are relatively unaffected of the sharing of I/O

location.

20.10.2 Read Access

Doing a read access to the UBRRH or the UCSRC Register is a more complex operation. However, in most appli-

cations, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the I/O location once returns the UBRRH Register
contents. If the register location was read in previous system clock cycle, reading the register in the current clock
cycle will return the UCSRC contents. Note that the timed sequence for reading the UCSRC is an atomic operation.
Interrupts must therefore be controlled (for example by disabling interrupts globally) during the read operation.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 161

ATmega32A

The following code example shows how to read the UCSRC Register contents.

Assembly Code Example!")

USART ReadUCSRC:
; Read UCSRC
in rl6,UBRRH
in rlé6,UCSRC

ret

C Code Example"

unsigned char USART ReadUCSRC(void)
{

unsigned char ucsrc;

/* Read UCSRC */

ucsrc = UBRRH;

ucsrc = UCSRC;

return ucsrc;

Note: 1. See “About Code Examples” on page 14.
The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as an ordinary register, as

long as the previous instruction did not access the register location.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 162

ATmega32A

20.11 Register Description

20.11.1 UDR - USART /O Data Register

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDR (Read)
TXB[7:0] UDR (Write)
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same 1/0 address
referred to as USART Data Register or UDR. The Transmit Data Buffer Register (TXB) will be the destination for
data written to the UDR Register location. Reading the UDR Register location will return the contents of the
Receive Data Buffer Register (RXB).

For 5-bit, 6-bit, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to zero by the
Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data written to UDR
when the UDRE Flag is not set, will be ignored by the USART Transmitter. When data is written to the transmit buf-
fer, and the Transmitter is enabled, the Transmitter will load the data into the transmit Shift Register when the Shift
Register is empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive buffer is
accessed. Due to this behavior of the receive buffer, do not use read modify write instructions (SBI and CBI) on this
location. Be careful when using bit test instructions (SBIC and SBIS), since these also will change the state of the
FIFO.

20.11.2 UCSRA - USART Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| Rx«¢c | T™XC | UDRE | FE | DOR | PE u2x MPCM | UCSRA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

¢ Bit 7 — RXC: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty
(that is, does not contain any unread data). If the receiver is disabled, the receive buffer will be flushed and conse-
quently the RXC bit will become zero. The RXC Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIE bit).

¢ Bit 6 — TXC: USART Transmit Complete

This flag bit is set when the entire frame in the transmit Shift Register has been shifted out and there are no new
data currently present in the transmit buffer (UDR). The TXC Flag bit is automatically cleared when a transmit com-
plete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC Flag can generate a
Transmit Complete interrupt (see description of the TXCIE bit).

¢ Bit 5 — UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is one, the buffer is
empty, and therefore ready to be written. The UDRE Flag can generate a Data Register empty Interrupt (see
description of the UDRIE bit).

UDRE is set after a reset to indicate that the transmitter is ready.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 163

ATmega32A

e Bit 4 — FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received, that is, when the first stop
bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer (UDR) is read. The FE
bit is zero when the stop bit of received data is one. Always set this bit to zero when writing to UCSRA.

* Bit 3 - DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is full (two
characters), it is a new character waiting in the receive Shift Register, and a new start bit is detected. This bit is
valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

* Bit 2 — PE: Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the parity checking
was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read. Always set this bit to
zero when writing to UCSRA.

¢ Bit 1 — U2X: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer
rate for asynchronous communication.

¢ Bit 0 — MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is written to one, all the incoming
frames received by the USART receiver that do not contain address information will be ignored. The transmitter is
unaffected by the MPCM setting. For more detailed information see “Multi-processor Communication Mode” on
page 160.

20.11.3 UCSRB - USART Control and Status Register B

Bit 7 6 5 4 3 2 1 0

| RXCIE | TXCIE | UDRIE | RXEN | TXEN | UCSZ2 RXB8 TXB8 | UCSRB
Read/Write R/W R/W R/W R/W R/W RIW R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete Interrupt will be generated
only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the RXC bit in
UCSRA is set.

¢ Bit 6 — TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete Interrupt will be generated
only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the TXC bit in UCSRA
is set.

¢ Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty Interrupt will be generated only
if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDRE bit in UCSRA is
set.

¢ Bit 4 —- RXEN: Receiver Enable
Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for the RxD
pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR, and PE Flags.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 164

ATmega32A

¢ Bit 3 — TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation for the
TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become effective until ongo-
ing and pending transmissions are completed, that is, when the transmit Shift Register and transmit Buffer Register
do not contain data to be transmitted. When disabled, the transmitter will no longer override the TxD port.

¢ Bit 2 - UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size) in a frame
the receiver and transmitter use.

* Bit 1 — RXB8: Receive Data Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits. Must be
read before reading the low bits from UDR.

¢ Bit 0 — TXB8: Transmit Data Bit 8

TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine data bits.
Must be written before writing the low bits to UDR.

20.11.4 UCSRC - USART Control and Status Register C

Bit 7 6 5 4 3 2 1 0

| URSEL | umseL | upmt1 | uPmo | USBS | uUCSz1 | uCsSz0 | UCPOL | UCSRC
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 1 0 0 0 0 1 1 0

The UCSRC Register shares the same 1/O location as the UBRRH Register. See the “ Accessing UBRRH/UCSRC
Registers” on page 161 section which describes how to access this register.

¢ Bit 7 — URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when reading UCSRC.
The URSEL must be one when writing the UCSRC.

* Bit 6 — UMSEL: USART Mode Select
This bit selects between Asynchronous and Synchronous mode of operation.

Table 20-4. UMSEL Bit Settings

UMSEL Mode
0 Asynchronous Operation
1 Synchronous Operation

* Bit 5:4 — UPM1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmitter will automatically gener-
ate and send the parity of the transmitted data bits within each frame. The Receiver will generate a parity value for
the incoming data and compare it to the UPMO setting. If a mismatch is detected, the PE Flag in UCSRA will be set.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 165

ATmega32A

Table 20-5. UPM Bits Settings
UPM1 UPMO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

¢ Bit 3 - USBS: Stop Bit Select
This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver ignores this setting.

Table 20-6. USBS Bit Settings
USBS Stop Bit(s)
0 1-bit
1 2-bit

¢ Bit 2:1 — UCSZ1:0: Character Size
The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (Character Size) in a frame
the Receiver and Transmitter use.

Table 20-7. UCSZ Bits Settings
uUCsz2 ucsz1 UCSZz0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

¢ Bit 0 - UCPOL: Clock Polarity
This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous mode is used. The UCPOL
bit sets the relationship between data output change and data input sample, and the synchronous clock (XCK).

Table 20-8. UCPOL Bit Settings
Transmitted Data Changed (Output of TxD Received Data Sampled (Input on RxD
UCPOL | Pin) Pin)
0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 166

20.11.5

20.12

ATmega32A

UBRRL and UBRRH - USART Baud Rate Registers
Bit 15 14 13 12 11 10 9 8
URSEL | - | - | - | UBRRI[11:8] UBRRH
UBRR[7:0] UBRRL
7 6 5 4 3 2 1 0
Read/Write RIW R R R R/W RIW RIW R/W
R/W RIW R/W RIW R/W RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The UBRRH Register shares the same 1/O location as the UCSRC Register. See the “ Accessing UBRRH/UCSRC
Registers” on page 161 section which describes how to access this register.

¢ Bit 15 - URSEL: Register Select
This bit selects between accessing the UBRRH or the UCSRC Register. It is read as zero when reading UBRRH.
The URSEL must be zero when writing the UBRRH.

* Bit 14:12 — Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when
UBRRH is written.

¢ Bit 11:0 - UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four most significant bits,
and the UBRRL contains the 8 least significant bits of the USART baud rate. Ongoing transmissions by the trans-
mitter and receiver will be corrupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous operation
can be generated by using the UBRR settings in Table 20-9. UBRR values which yield an actual baud rate differing
less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the receiver
will have less noise resistance when the error ratings are high, especially for large serial frames (see “Asynchro-
nous Operational Range” on page 158). The error values are calculated using the following equation:

Baud RateClosest Match
BaudRate

Error[%] = (- 1) « 100%

Table 20-9. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

fosc = 1.0000MHz foec = 1.8432MHz fosc = 2.0000MHz
g::‘ed u2x=0 u2X =1 u2x=0 u2X = 1 U2x=0 U2X =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 21%

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 167

ATmega32A

Table 20-9. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)
fysc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

paud U2X = 0 u2Xx =1 U2X =0 u2x =1 U2X =0 u2Xx =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max (M 62.5Kbps 125Kbps 115.2Kbps 230.4Kbps 125Kbps 250Kbps

1. UBRR =0, Error = 0.0%

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 168

ATmega32A

Table 20-10. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864MHz fosc = 4.0000MHz fooc = 7.3728MHz
paud u2X =0 u2x =1 U2X =0 u2x =1 u2x =0 u2x =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 1 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 1 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
™ - - - - - - - - - - 0 -7.8%
Max (M 230.4Kbps 460.8Kbps 250Kbps 0.5Mbps 460.8Kbps 921.6Kbps
1. UBRR = 0, Error = 0.0%

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 169

ATmega32A

Table 20-11. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz
paud u2X =0 u2x =1 u2x =0 u2x =1 u2x =0 u2x =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 1 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 1 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
™ - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max (M 0.5Mbps 1Mbps 691.2Kbps 1.3824Mbps 921.6Kbps 1.8432Mbps
1. UBRR = 0, Error = 0.0%

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 170

ATmega32A

Table 20-12. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 16.0000MHz
u2x=10 u2x =1

Baud Rate (bps) UBRR Error UBRR Error
2400 416 -0.1% 832 0.0%
4800 207 0.2% 416 -0.1%
9600 103 0.2% 207 0.2%
14.4k 68 0.6% 138 -0.1%
19.2k 51 0.2% 103 0.2%
28.8k 34 -0.8% 68 0.6%
38.4k 25 0.2% 51 0.2%
57.6k 16 21% 34 -0.8%
76.8k 12 0.2% 25 0.2%

115.2k 8 -3.5% 16 2.1%

230.4k 3 8.5% 8 -3.5%
250k 3 0.0% 7 0.0%

0.5M 1 0.0% 3 0.0%

™ 0 0.0% 1 0.0%

Max (M 1Mbps 2Mbps

1. UBRR =0, Error = 0.0%
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 171

ATmega32A

21. Two-wire Serial Interface

21.1 Features
* Simple Yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
* Both Master and Slave Operation Supported
* Device Can Operate as Transmitter or Receiver
* 7-bit Address Space allows up to 128 Different Slave Addresses
* Multi-master Arbitration Support
* Up to 400kHz Data Transfer Speed
* Slew-rate Limited Output Drivers
* Noise Suppression Circuitry Rejects Spikes on Bus Lines
* Fully Programmable Slave Address with General Call Support
* Address Recognition causes Wake-up when AVR is in Sleep Mode

21.2 Two-wire Serial Interface Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol
allows the systems designer to interconnect up to 128 different devices using only two bi-directional bus lines, one
for clock (SCL) and one for data (SDA). The only external hardware needed to implement the bus is a single pull-
up resistor for each of the TWI bus lines. All devices connected to the bus have individual addresses, and mecha-
nisms for resolving bus contention are inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

cC

Device 1 Device 2 Device3 | Device n R1 R2

SDA

A
Y

SCL

A
\

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 172

21.21

21.2.2

213

21.31

21.3.2

ATmega32A

TWI Terminology
The following definitions are frequently encountered in this section.

Table 21-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The master also generates the
SCL clock.

Slave The device addressed by a master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

Electrical Interconnection
As depicted in Figure 21-1, both bus lines are connected to the positive supply voltage through pull-up resistors.
The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements a wired-AND func-
tion which is essential to the operation of the interface. A low level on a TWI bus line is generated when one or
more TWI devices output a zero. A high level is output when all TWI devices tri-state their outputs, allowing the
pull-up resistors to pull the line high. Note that all AVR devices connected to the TWI bus must be powered in order
to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of 400 pF and
the 7-bit slave address space. A detailed specification of the electrical characteristics of the TWI is given in “Two-
wire Serial Interface Characteristics” on page 289. Two different sets of specifications are presented there, one rel-
evant for bus speeds below 100kHz, and one valid for bus speeds up to 400kHz.

Data Transfer and Frame Format

Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the data line
must be stable when the clock line is high. The only exception to this rule is for generating start and stop
conditions.

Figure 21-2. Data Validity

SDA

SCL
Data Stable Data Stable

Data Change

START and STOP Conditions
The master initiates and terminates a data transmission. The transmission is initiated when the master issues a
START condition on the bus, and it is terminated when the master issues a STOP condition. Between a START
and a STOP condition, the bus is considered busy, and no other master should try to seize control of the bus. A
special case occurs when a new START condition is issued between a START and STOP condition. This is
referred to as a REPEATED START condition, and is used when the master wishes to initiate a new transfer with-
out releasing control of the bus. After a REPEATED START, the bus is considered busy until the next STOP. This
is identical to the START behavior, and therefore START is used to describe both START and REPEATED START

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 173

ATmega32A

for the remainder of this datasheet, unless otherwise noted. As depicted below, START and STOP conditions are
signalled by changing the level of the SDA line when the SCL line is high.

Figure 21-3. START, REPEATED START, and STOP Conditions

21.3.3 Address Packet Format
All address packets transmitted on the TWI bus are nine bits long, consisting of seven address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is to be per-
formed, otherwise a write operation should be performed. When a slave recognizes that it is being addressed, it
should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed slave is busy, or for some
other reason can not service the master’s request, the SDA line should be left high in the ACK clock cycle. The
master can then transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the designer, but the
address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK cycle. A general
call is used when a master wishes to transmit the same message to several slaves in the system. When the gen-
eral call address followed by a Write bit is transmitted on the bus, all slaves set up to acknowledge the general call
will pull the SDA line low in the ack cycle. The following data packets will then be received by all the slaves that
acknowledged the general call. Note that transmitting the general call address followed by a Read bit is meaning-
less, as this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 21-4. Address Packet Format

Addr MSB AddrLSB R

' /W ACK
O X
WAVAVANE

START

21.34 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and an acknowledge bit.
During a data transfer, the master generates the clock and the START and STOP conditions, while the receiver is
responsible for acknowledging the reception. An Acknowledge (ACK) is signalled by the receiver pulling the SDA
line low during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the
receiver has received the last byte, or for some reason cannot receive any more bytes, it should inform the trans-
mitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 174

ATmega32A

Figure 21-5. Data Packet Format

Data MSB Data LSB ACK

Aggregate \
SDA N

I
I
I
I
I
I
I
I
I
i
SDA from — \ !
Transmitter \ i
I

I

T

I

I

I

I

I

I

I

I

I

I

SDAfrom

/

receiverR

SCL from
Master SS B

Data Byte

STOP, REPEATED
START or Next
Data Byte

21.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP con-
dition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the wired-
ANDing of the SCL line can be used to implement handshaking between the master and the slave. The slave can
extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the master is too
fast for the slave, or the slave needs extra time for processing between the data transmissions. The slave extend-
ing the SCL low period will not affect the SCL high period, which is determined by the master. As a consequence,
the slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 21-6 shows a typical data transmission. Note that several data bytes can be transmitted between the
SLA+R/W and the STOP condition, depending on the software protocol implemented by the application software.

Figure 21-6. Typical Data Transmission

Addr MSB AddrLSB R/W ACK Data MSB DataLSB ACK

o N O X

START SLA+R/W Data Byte STOP

21.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to ensure
that transmissions will proceed as normal, even if two or more masters initiate a transmission at the same time.
Two problems arise in multi-master systems:

+ An algorithm must be implemented allowing only one of the masters to complete the transmission. All other
masters should cease transmission when they discover that they have lost the selection process. This selection
process is called arbitration. When a contending master discovers that it has lost the arbitration process, it
should immediately switch to slave mode to check whether it is being addressed by the winning master. The
fact that multiple masters have started transmission at the same time should not be detectable to the slaves,
that is, the data being transferred on the bus must not be corrupted.

« Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial
clocks from all masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate the
arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all masters will be
wired-ANDed, yielding a combined clock with a high period equal to the one from the master with the shortest high
period. The low period of the combined clock is equal to the low period of the master with the longest low period.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 175

ATmega32A

Note that all masters listen to the SCL line, effectively starting to count their SCL high and low time-out periods
when the combined SCL line goes high or low, respectively.

Figure 21-7. SCL Synchronization between Multiple Masters

low | high
\ \ \ \
\ \ \ \
| I] |
SCL from [[\ \
Master A ‘ l/ | |
\ \
\ \
,,,,,, | [
SCL from | s L/ \ N
Master B \) V| | I
[1 T
\ \ } } \
\ [| \
SCL bus | L/ \ |
Line \ & | |
I 1 | I
\ \ \
| TBoy | } TBhigh |
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the value read
from the SDA line does not match the value the master had output, it has lost the arbitration. Note that a master
can only lose arbitration when it outputs a high SDA value while another master outputs a low value. The losing
master should immediately go to slave mode, checking if it is being addressed by the winning master. The SDA
line should be left high, but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one master remains, and this may take many bits. If several
masters are trying to address the same slave, arbitration will continue into the data packet.

Figure 21-8. Arbitration between Two Masters

Master A Loses

SDA from | Arbitration, SDA,# SDA

Master A

SDA from
Master B m—/—\—

Synchronized

Note that arbitration is not allowed between:

« A REPEATED START condition and a data bit
« A STOP condition and a data bit

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 176

21.5

21.51

21.5.2

ATmega32A

« A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This implies
that in multi-master systems, all data transfers must use the same composition of SLA+R/W and data packets. In
other words: All transmissions must contain the same number of data packets, otherwise the result of the arbitra-
tion is undefined.

Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 21-9. All registers drawn in a thick line
are accessible through the AVR data bus.

Figure 21-9. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter
Y Y
4 A
Bus Interface Unit Bit Rate Generator
START / STOP . .
Control Spike Suppression Prescaler
T . Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Ack (TWBR)
A A [
A / y
Address Match Unit Control Unit
Address Register | Status Register Control Register
(TWAR) i > (TWSR) (TWCR)
TWI Unit
State Machine and
Address Comparator Status control

SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate limiter in
order to conform to the TWI specification. The input stages contain a spike suppression unit removing spikes
shorter than 50 ns. Note that the internal pullups in the AVR pads can be enabled by setting the PORT bits corre-
sponding to the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in some systems
eliminate the need for external ones.

Bit Rate Generator Unit
This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by settings in
the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR). Slave operation
does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the slave must be at least 16
times higher than the SCL frequency. Note that slaves may prolong the SCL low period, thereby reducing the aver-
age TWI bus clock period. The SCL frequency is generated according to the following equation:
CPU Clock frequency

SCL frequency =
16+ 2(TWBR) - 4775

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 177

2153

2154

21.5.5

ATmega32A

* TWBR = Value of the TWI Bit Rate Register
* TWPS = Value of the prescaler bits in the TWI Status Register

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus line load. See Table
28-4 on page 290 for value of pull-up resistor.

Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and Arbitration detec-
tion hardware. The TWDR contains the address or data bytes to be transmitted, or the address or data bytes
received. In addition to the 8-bit TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to
be transmitted or received. This (N)ACK Register is not directly accessible by the application software. However,
when receiving, it can be set or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter
mode, the value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START, and
STOP conditions. The START/STOP controller is able to detect START and STOP conditions even when the AVR
MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware continuously monitors the
transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration, the Control Unit is
informed. Correct action can then be taken and appropriate status codes generated.

Address Match Unit
The Address Match unit checks if received address bytes match the 7-bit address in the TWI Address Register
(TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the TWAR is written to one, all incoming
address bits will also be compared against the General Call address. Upon an address match, the Control Unit is
informed, allowing correct action to be taken. The TWI may or may not acknowledge its address, depending on set-
tings in the TWCR. The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a master.

Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the TWI Control Reg-
ister (TWCR). When an event requiring the attention of the application occurs on the TWI bus, the TWI Interrupt
Flag (TWINT) is asserted. In the next clock cycle, the TWI Status Register (TWSR) is updated with a status code
identifying the event. The TWSR only contains relevant status information when the TWI Interrupt Flag is asserted.
At all other times, the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application software to complete its
tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

« After the TWI has transmitted a START/REPEATED START condition

* After the TWI has transmitted SLA+R/W

« After the TWI has transmitted an address byte

* After the TWI has lost arbitration

« After the TWI has been addressed by own slave address or general call

« After the TWI has received a data byte

+ After a STOP or REPEATED START has been received while still addressed as a slave
* When a bus error has occurred due to an illegal START or STOP condition

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 178

21.6

ATmega32A

Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a
byte or transmission of a START condition. Because the TWI is interrupt-based, the application software is free to
carry on other operations during a TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR
together with the Global Interrupt Enable bit in SREG allow the application to decide whether or not assertion of the
TWINT Flag should generate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT
Flag in order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application response. In this
case, the TWI Status Register (TWSR) contains a value indicating the current state of the TWI bus. The application
software can then decide how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and
TWDR Registers.

Figure 21-10 is a simple example of how the application can interface to the TWI hardware. In this example, a mas-
ter wishes to transmit a single data byte to a slave. This description is quite abstract, a more detailed explanation
follows later in this section. A simple code example implementing the desired behavior is also presented.

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission

Application

Action

TWI

Hardware

Action

1. Application
writes to TWCR
to initiate
transmission of
START

3. Check TWSR to see if START was
sendt. Application loads SLA+W into
TWDR, and loads appropriate control
signals into TWCR, making sure that
TWINT is written to one, and TWSTA

5. Check TWSR to see if SLA+W was
sent and ACK received.
Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

7.Check TWSR to see if data was sent
and ACK received.
Application loads appropriate control
signals to send STOP into TWCR,
making sure that TWINT is written to one

is written to zero written to one

SLA+W ’—AF Data

4. TWINT set.
Status code indicates
SLA+W sent, ACK
received

L

TWI bus START

STOP ‘

Indicates
TWINT set

6. TWINT set.
Status code indicates
data sent, ACK received

2. TWINT set.
Status code indicates
START condition sent

The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific
value into TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the Flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

When the START condition has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the START condition has successfully been sent.

The application software should now examine the value of TWSR, to make sure that the START condition

was successfully transmitted. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected, the application must
load SLA+W into TWDR. Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware

to transmit the SLA+W present in TWDR. Which value to write is described later on. However, it is impor-
tant that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not
start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has cleared
TWINT, the TWI will initiate transmission of the address packet.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 179

ATmega32A

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the address packet has successfully been sent. The status code will also
reflect whether a slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address packet
was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates other-
wise, the application software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load a data packet into TWDR. Subsequently, a spe-
cific value must be written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the
TWINT bitin TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate trans-
mission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated with
a status code indicating that the data packet has successfully been sent. The status code will also reflect
whether a slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the data packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise,
the application software might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must write a specific value to TWCR, instructing the TWI hard-
ware to transmit a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Imnmediately after the application has cleared TWINT,
the TWI will initiate transmission of the STOP condition. Note that TWINT is NOT set after a STOP condi-
tion has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be sum-
marized as follows:

* When the TWI has finished an operation and expects application response, the TWINT Flag is set. The SCL
line is pulled low until TWINT is cleared.

* When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for the next TWI
bus cycle. As an example, TWDR must be loaded with the value to be transmitted in the next bus cycle.

« After all TWI Register updates and other pending application software tasks have been completed, TWCR is
written. When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The TWI will
then commence executing whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code below assumes that
several definitions have been made, for example by using include-files.

Assembly code example C example Comments
1di rl6, (1<<TWINT) | (1<<TWSTA) | TWCR = (1<<TWINT) | (1<<TWSTA) | Send START condition
(1<<TWEN) (1<<TWEN)
out TWCR, rlé6
waitl: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the START condition has been
sbrs rl6, TWINT transmitted
rjmp waitl

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 180

ATmega32A

Assembly code example C example Comments
in rl6, TWSR if ((TWSR & O0xF8) != START) Check value of TWI Status Register. Mask
andi rl6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rl6, START START go to ERROR
brne ERROR
lai rl6, SLAW TWDR = SLA W; Load SLA_W into TWDR Register. Clear
out TWDR, rlé6 TWCR = (1<<TWINT) | (1<<TWEN); TWINT bit in TWCR to start transmission
1di rl6, (1<<TWINT) | (1<<TWEN) of address
out TWCR, rlé6
wait2: while (! (TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in r16, TWCR that the SLA+W has been transmitted,
sbrs rl6, TWINT and ACK/NACK has been received.
rjmp wait2
in rl6, TWSR if ((TWSR & OxF8) 1= MT_SLA ACK) | Check value of TWI Status Register. Mask
andi rl6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rlé, MT SLA ACK MT_SLA_ACK go to ERROR
brne ERROR
lai rlé, DATA TWDR = DATA; Load DATA into TWDR Register. Clear
out TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN); TWINT bit in TWCR to start transmission
1di rl6, (1<<TWINT) | (1<<TWEN) of data
out TWCR, rlé6
wait3: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the DATA has been transmitted, and
sbrs rl6, TWINT ACK/NACK has been received.
rjmp wait3
in rl6, TWSR if ((TWSR & O0xF8) != MT_DATA ACK)|Check value of TWI Status Register. Mask
andi rl6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rl6, MT DATA ACK MT_DATA_ACK go to ERROR
brne ERROR
1di rl6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (1<<TWEN) | Transmit STOP condition

(1<<TWSTO) (1<<TWSTO) ;

out TWCR, rlé6

21.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT), Master Receiver
(MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these modes can be used in the same applica-
tion. As an example, the TWI can use MT mode to write data into a TWI EEPROM, MR mode to read the data back
from the EEPROM. If other masters are present in the system, some of these might transmit data to the TWI, and
then SR mode would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described along with figures
detailing data transmission in each of the modes. These figures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 181

21.71

ATmega32A

Data: 8-bit data byte
P: STOP condition
SLA: Slave Address

In Figure 21-12 to Figure 21-18, circles are used to indicate that the TWINT Flag is set. The numbers in the circles
show the status code held in TWSR, with the prescaler bits masked to zero. At these points, actions must be taken
by the application to continue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate software action. For
each status code, the required software action and details of the following serial transfer are given in Table 21-2 to
Table 21-5. Note that the prescaler bits are masked to zero in these tables.

Master Transmitter Mode
In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see Figure 21-11). In
order to enter a Master mode, a START condition must be transmitted. The format of the following address packet
determines whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 21-11. Data Transfer in Master Transmitter Mode

cC

Device 1 Device 2 X .
MASTER SLAVE Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER

SDA Y

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to transmit a START
condition and TWINT must be written to one to clear the TWINT Flag. The TWI will then test the Two-wire Serial
Bus and generate a START condition as soon as the bus becomes free. After a START condition has been trans-
mitted, the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table 21-2). In order to
enter MT mode, SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following value
to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is set again and a
number of status codes in TWSR are possible. Possible status codes in master mode are $18, $20, or $38. The
appropriate action to be taken for each of these status codes is detailed in Table 21-2.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 182

ATmega32A

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by writing the
data byte to TWDR. TWDR must only be written when TWINT is high. If not, the access will be discarded, and the
Write Collision bit (TWWC) will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following value to TWCR:

TWCR

Value

TWINT

TWEA

TWSTA TWSTO TWWC

TWEN

- TWIE

1 X

0 0 X

1

0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generating a STOP condi-
tion or a repeated START condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

Value 1 X 0 1 X 1 0 X
A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

Value 1 X 1 0 X 1 0 X

After a repeated START condition (state $10) the Two-wire Serial Interface can access the same slave again, or a
new slave without transmitting a STOP condition. Repeated START enables the master to switch between slaves,
master transmitter mode and master receiver mode without losing control of the bus.

Table 21-2.

Status Codes for Master Transmitter Mode

Status Code

Application Software Response

(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- Tolfrom TWDR
are 0 face Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
$10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
$18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be Reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset
$20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$38 Arbitration lost in SLA+W or data | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
bytes slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 183

21.7.2

ATmega32A

MT

Figure 21-12. Formats and States in the Master Transmitter Mode

Successfull
transmission S SLA W A DATA
to a slave _______
receiver

$08 $18

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$28

~_[IE

MR

x P |

Other master
AorA | continues

Other master
AorA | continues

$38

A Other master
continues

$38

To corresponding
states in slave mode

I:I From master to slave

From slave to master

Master Receiver Mode

DATA | A

O,

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Master Receiver mode, a number of data bytes are received from a slave transmitter (see Figure 21-13). In
order to enter a Master mode, a START condition must be transmitted. The format of the following address packet
determines whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 184

ATmega32A

Figure 21-13. Data Transfer in Master Receiver Mode

cc

Device 1 Device 2)
MASTER SLAVE Device3 | ... Device n R1 R2
RECEIVER TRANSMITTER
Y Y
SDA Y
SCL Y
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to one to transmit a
START condition and TWINT must be set to clear the TWINT Flag. The TWI will then test the Two-wire Serial Bus
and generate a START condition as soon as the bus becomes free. After a START condition has been transmitted,
the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table 21-2). In order to enter
MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should
be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following value to
TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is set again and a
number of status codes in TWSR are possible. Possible status codes in master mode are $38, $40, or $48. The
appropriate action to be taken for each of these status codes is detailed in Table 21-3. Received data can be read
from the TWDR Register when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte
has been received. After the last byte has been received, the MR should inform the ST by sending a NACK after
the last received data byte. The transfer is ended by generating a STOP condition or a repeated START condition.
A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
Value 1 X 0 1 X 1 0 X
A REPEATED START condition is generated by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
Value 1 X 1 0 X 1 0 X

After a repeated START condition (state $10) the Two-wire Serial Interface can access the same slave again, or a
new slave without transmitting a STOP condition. Repeated START enables the master to switch between slaves,
Master Transmitter mode and Master Receiver mode without losing control over the bus.

Table 21-3. Status Codes for Master Receiver Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- | 1o/0m TWDR
are 0 face Hardware STA STO TWINT | TWEA | Next Action Taken by TWI Hardware
$08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 185

ATmega32A

Table 21-3. Status Codes for Master Receiver Mode (Continued)
$10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to masTer Transmitter mode
$38 Arbitration lost in SLA+R or NOT | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
$40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
$48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
$58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
Figure 21-14. Formats and States in the Master Receiver Mode
MR
;Seuccecpens;nm” 5 | SLA R A | DATA A | DATA | A P |
from a slave -
receiver
$08 $40 @ $58
Next transfer i
started with a Rs | SLA 1 R
repeated start
condition
N ki led w
g e e
slave address
$48
Arbitration lost in sl Mt
rbitration lost in slave er master ler master
address or data byte AorA | O::honhnue; A | O::T:mtmue;
$38 $38
Arbitration lost and Other master
addressed as slave continues

21.7.3

To corresponding
states in slave mode

[]
[]

Slave Receiver Mode

From master to slave

From slave to master

[om

@

Any number of data bytes

and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see Figure 21-15). All
the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 186

ATmega32A

Figure 21-15. Data Transfer in Slave Receiver Mode

cC

Device 1 Device 2 . .
SLAVE MASTER Device3 | ... Device n R1 R2
RECEIVER TRANSMITTER

SDA y

scL Y

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 | TWAS5 \ TWA4 \ TWA3 \ TWA2 \ TWA1 \ TWAO TWGCE
Value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when addressed by a
master. If the LSB is set, the TWI will respond to the general call address ($00), otherwise it will ignore the general
call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledge-
ment of the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the
general call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will oper-
ate in SR mode, otherwise ST mode is entered. After its own slave address and the write bit have been received,
the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to determine the
appropriate software action. The appropriate action to be taken for each status code is detailed in Table 21-4. The
Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master mode (see states $68
and $78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next
received data byte. This can be used to indicate that the slave is not able to receive any more bytes. While TWEA
is zero, the TWI does not acknowledge its own slave address. However, the Two-wire Serial Bus is still monitored
and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may be used to
temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle Mode, the clock system to the TWI is turned off. If the TWEA bit is set, the inter-
face can still acknowledge its own slave address or the general call address by using the Two-wire Serial Bus clock
as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock low during the wake
up and until the TWINT Flag is cleared (by writing it to one). Further data reception will be carried out as normal,
with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line
may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 187

ATmega32A

Table 21-4. Status Codes for Slave Receiver Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial Bus To TWCR
Prescaler Bits and Two-wire Serial Interface Tolfrom TWDR
are 0 Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$60 Own SLA+W has been received; | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
$68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
$70 General call address has been No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
$78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
$80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
$88 Previously addressed with own | Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
$90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
$98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
$A0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 188

ATmega32A

Figure 21-16. Formats and States in the Slave Receiver Mode

Reception of the own H T
slavezddress and one or | S SLA W A DATA | A | DATA A | PorS |
more data bytes. All are -T -
acknowledged
$60 $80 $80 $A0
Last data byte received
is not acknowledged A
$88
Arbitration lost as master
and addressed as slave A
$68

Reception of the general call
addrepss and one%r more data General Call A DATA | A | DATA A | PorS |

bytes
$90 $90 $A0

Last data byte received is
not acknowledged A

Arbitration lost as master and
addressed as slave by general call A

$78

Any number of data bytes

I:I From master to slave DATA | A and their associated acknowledge bits

From slave to master @ This number (contained in TWSR) corresponds

to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

21.7.4 Slave Transmitter Mode
In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 21-17). All
the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-17. Data Transfer in Slave Transmitter Mode

cc
Device 1 Device 2 . .
SLAVE MASTER Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA A
scL Y

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 | TWAS5] TWA4] TWA3 ‘ TWA2 ‘ TWA(1 \ TWAO TWGCE
Value Device’s Own Slave Address

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 189

ATmega32A

The upper seven bits are the address to which the Two-wire Serial Interface will respond when addressed by a
master. If the LSB is set, the TWI will respond to the general call address ($00), otherwise it will ignore the general
call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledge-
ment of the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the
general call address if enabled) followed by the data direction bit. If the direction bit is “1” (read), the TWI will oper-
ate in ST mode, otherwise SR mode is entered. After its own slave address and the write bit have been received,
the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to determine the
appropriate software action. The appropriate action to be taken for each status code is detailed in Table 21-5. The
slave transmitter mode may also be entered if arbitration is lost while the TWI is in the Master mode (see state
$B0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State $CO or
state $C8 will be entered, depending on whether the master receiver transmits a NACK or ACK after the final byte.
The TWI is switched to the not addressed Slave mode, and will ignore the master if it continues the transfer. Thus
the master receiver receives all “1” as serial data. State $C8 is entered if the master demands additional data bytes
(by transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expecting NACK from
the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire Serial Bus is still
monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may
be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the inter-
face can still acknowledge its own slave address or the general call address by using the Two-wire Serial Bus clock
as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock will low during the
wake up and until the TWINT Flag is cleared (by writing it to one). Further data transmission will be carried out as
normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the SCL
line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 190

ATmega32A

Table 21-5.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Tol/from TWDR

To TWCR

STA

STO

TWINT

TWEA

Next Action Taken by TWI Hardware

$A8

Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

0

1

1

Last data byte will be transmitted and NOT ACK should

be received
Data byte will be transmitted and ACK should be re-
ceived

$BO

Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should

be received
Data byte will be transmitted and ACK should be re-
ceived

$B8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should

be received
Data byte will be transmitted and ACK should be re-
ceived

$Cco

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

$C8

Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

Figure 21-18. Formats and States in the Slave Transmitter Mode

Reception of the own H -7
Svensmossmaomeor | S | sta i om | a pan | A o | & [Pos|
more data bytes -
$A8 $B8 @
Arbitration lost as master
and addressed as slave A
$B0
Last data byte transmitted. - _v -
Switched to not addressed A All 1's
slave (TWEA ='0") - T
$C8
- Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 191

21.7.5

ATmega32A

Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 21-6.

Status $F8 indicates that no relevant information is available because the TWINT Flag is not set. This occurs
between other states, and when the TWI is not involved in a serial transfer.

Status $00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus error occurs when
a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are
during the serial transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT
is set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared by writing a logic one to
it. This causes the TWI to enter the not addressed slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

Table 21-6. Miscellaneous States

Status Code Application Software Response

(TWSR)

Prescaler Bits Bus and Two-wire Serial Inter- Tolfrom TWDR

are 0

Status of the Two-wire Serial To TWCR

face Hardware STA | STO | TWINT ‘ TWEA | Next Action Taken by TWI Hardware

$F8

No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”

$00

Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

21.7.6

21.8

Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action. Consider for exam-
ple reading data from a serial EEPROM. Typically, such a transfer involves the following steps:

1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read

3. The reading must be performed

4. The transfer must be finished

Note that data is transmitted both from master to slave and vice versa. The master must instruct the slave what
location it wants to read, requiring the use of the MT mode. Subsequently, data must be read from the slave, imply-
ing the use of the MR mode. Thus, the transfer direction must be changed. The master must keep control of the
bus during all these steps, and the steps should be carried out as an atomical operation. If this principle is violated
in a multimaster system, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the
master will read the wrong data location. Such a change in transfer direction is accomplished by transmitting a
REPEATED START between the transmission of the address byte and reception of the data. After a REPEATED
START, the master keeps ownership of the bus. The following figure shows the flow in this transfer.

Figure 21-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver

— —

S SLA+W A ADDRESS A | Rs SLA+R A DATA AlP

S = START Rs = REPEATED START P = STOP

Transmitted from Master to Slave Transmitted from Slave to Master

Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one or more
of them. The TWI standard ensures that such situations are handled in such a way that one of the masters will be

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 192

ATmega32A

allowed to proceed with the transfer, and that no data will be lost in the process. An example of an arbitration situ-
ation is depicted below, where two masters are trying to transmit data to a slave receiver.

Figure 21-20. An Arbitration Example

VCC
Device 1 Device 2 Device 3 .
MASTER MASTER SLAVE | e Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER
A A
SDA = y Y >
SCL = A A >

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 193

ATmega32A

Several different scenarios may arise during arbitration, as described below:

» Two or more masters are performing identical communication with the same slave. In this case, neither the
slave nor any of the masters will know about the bus contention.

» Two or more masters are accessing the same slave with different data or direction bit. In this case, arbitration
will occur, either in the READ/WRITE bit or in the data bits. The masters trying to output a one on SDA while
another master outputs a zero will lose the arbitration. Losing masters will switch to not addressed slave mode
or wait until the bus is free and transmit a new START condition, depending on application software action.

» Two or more masters are accessing different slaves. In this case, arbitration will occur in the SLA bits. Masters
trying to output a one on SDA while another master outputs a zero will lose the arbitration. Masters losing
arbitration in SLA will switch to slave mode to check if they are being addressed by the winning master. If
addressed, they will switch to SR or ST mode, depending on the value of the READ/WRITE bit. If they are not
being addressed, they will switch to not addressed slave mode or wait until the bus is free and transmit a new
START condition, depending on application software action.

This is summarized in Figure 21-21. Possible status values are given in circles.

Figure 21-21. Possible Status Codes Caused by Arbitration

START SLA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own
Address / General Call
received

No 38 ‘| TWI bus will be released and not addressed slave mode will be entered
'\LSTART condition will be transmitted when the bus becomes free

Yes

Direction Write 68/78 Jﬁa byte will be received and NOT ACK will be returned
v '@a byte will be received and ACK will be returned

Read __[Last data byte will be transmitted and NOT ACK should be received
@'@a byte will be transmitted and ACK should be received

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 194

21.9

21.91

21.9.2

ATmega32A

Register Description

TWBR - TWI Bit Rate Register

Bit 7 6 5 4 3 2 1 0
| TWBR7 | TWBR6 | TWBR5S | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBR0O | TWBR

Read/Write R/W R/W R/W RIW R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency divider which gen-
erates the SCL clock frequency in the Master modes. See “Bit Rate Generator Unit” on page 177 for calculating bit
rates.

TWCR - TWI Control Register
The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a master access by
applying a START condition to the bus, to generate a receiver acknowledge, to generate a stop condition, and to
control halting of the bus while the data to be written to the bus are written to the TWDR. It also indicates a write
collision if data is attempted written to TWDR while the register is inaccessible.

Bit 7 6 5 4 3 2 1 0

| TwiNT | TWEA | TWSTA | TWSTO | TWWC | TWEN | - | TWE | Twcr
Read/Write R/W R/W R/W R/W R R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application software response. If
the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the TWI Interrupt Vector. While the TWINT Flag
is set, the SCL low period is stretched.

The TWINT Flag must be cleared by software by writing a logic one to it. Note that this flag is not automatically
cleared by hardware when executing the interrupt routine. Also note that clearing this flag starts the operation of
the TWI, so all accesses to the TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data Reg-
ister (TWDR) must be complete before clearing this flag.

* Bit 6 - TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to one, the ACK pulse is
generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire Serial Bus temporarily.
Address recognition can then be resumed by writing the TWEA bit to one again.

¢ Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a master on the Two-wire Serial Bus. The
TWI hardware checks if the bus is available, and generates a START condition on the bus if it is free. However, if
the bus is not free, the TWI waits until a STOP condition is detected, and then generates a new START condition to
claim the bus Master status. TWSTA must be cleared by software when the START condition has been
transmitted.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 195

2193

ATmega32A

¢ Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire Serial Bus. When
the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In slave mode, setting the
TWSTO bit can be used to recover from an error condition. This will not generate a STOP condition, but the TWI
returns to a well-defined unaddressed slave mode and releases the SCL and SDA lines to a high impedance state.

¢ Bit 3 - TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register — TWDR when TWINT is low. This flag is
cleared by writing the TWDR Register when TWINT is high.

e Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the TWI
takes control over the 1/0 pins connected to the SCL and SDA pins, enabling the slew-rate limiters and spike filters.
If this bit is written to zero, the TWI is switched off and all TWI transmissions are terminated, regardless of any
ongoing operation.

* Bit1 - Reserved
This bit is a reserved bit and will always read as zero.

e Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for as long as
the TWINT Flag is high.

TWSR - TWI Status Register
Bit 7 6 5 4 3 2 1 0
| TWS7 | TWS6 | TWS5 TWS4 TWS3 - TWPS1 TWPSO0 | TWSR
Read/Write R R R R R R R/W R/W
Initial Value 1 1 1 1 1 0 0 0

¢ Bits 7:3 — TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different status codes are
described later in this section. Note that the value read from TWSR contains both the 5-bit status value and the 2-
bit prescaler value. The application designer should mask the prescaler bits to zero when checking the Status bits.
This makes status checking independent of prescaler setting. This approach is used in this datasheet, unless oth-
erwise noted.

* Bit2 - Reserved
This bit is reserved and will always read as zero.

* Bits 1:0 - TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 21-7. TWI Bit Rate Prescaler

TWPS1 TWPSO0 Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 196

2194

21.9.5

ATmega32A

To calculate bit rates, see “Bit Rate Generator Unit” on page 177. The value of TWPS1:0 is used in the equation.

TWDR - TWI Data Register
Bit 7 6 5 4 3 2 1 0
| two7 | Ttwbe | TwDs TWD4 TWD3 TWD2 TWD1 TWDO | TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains the last
byte received. It is writable while the TWI is not in the process of shifting a byte. This occurs when the TWI Interrupt
Flag (TWINT) is set by hardware. Note that the Data Register cannot be initialized by the user before the first inter-
rupt occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted out, data on the bus
is simultaneously shifted in. TWDR always contains the last byte present on the bus, except after a wake up from a
sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost bus arbitra-
tion, no data is lost in the transition from Master to Slave. Handling of the ACK bit is controlled automatically by the
TWI logic, the CPU cannot access the ACK bit directly.

e Bits 7:0 — TWD: TWI Data Register
These eight bits contin the next data byte to be transmitted, or the latest data byte received on the Two-wire Serial
Bus.

TWAR - TWI (Slave) Address Register
Bit 7 6 5 4 3 2 1 0
| TWA6 | TWA5 | TWA4 | TWA3 TWA2 TWA1 TWAO TWGCE | TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit slave address (in the seven most significant bits of TWAR) to which the
TWI will respond when programmed as a slave transmitter or receiver. In multimaster systems, TWAR must be set
in masters which can be addressed as slaves by other masters.

The LSB of TWAR is used to enable recognition of the general call address ($00). There is an associated address
comparator that looks for the slave address (or general call address if enabled) in the received serial address. If a
match is found, an interrupt request is generated.

¢ Bits 7:1 — TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

¢ Bit 0 — TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 197

ATmega32A

22. Analog Comparator

22.1

22.2

Overview

The Analog Comparator compares the input values on the positive pin AINO and negative pin AIN1. When the volt-
age on the positive pin AINO is higher than the voltage on the negative pin AIN1, the Analog Comparator Output,
ACO, is set. The comparator’s output can be set to trigger the Timer/Counter1 Input Capture function. In addition,
the comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The user can select Interrupt
triggering on comparator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 22-1.

Figure 22-1. Analog Comparator Block Diagram(V(

Notes: 1.

BANDGAP
REFERENCE

ACB

AINO

VCC

C
ACD —»
ACIE

AIN1

h L
N INTERRUPT _>—>
SELECT

A

R

ACME
ADEN

ADC MULTIPLEXER
OUTPUT®

%_

See Table 22-1 on page 198.

/¢¢—>

ACIS1 ACISO ACIC

—

ACO

»
>

ANALOG
COMPARATOR
IRQ

ACI

TO T/C1 CAPTURE
TRIGGER MUX

2. Refer to Figure 1-1 on page 10 and Table 13-6 on page 64 for Analog Comparator pin placement.

Analog Comparator Multiplexed Input
It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Comparator. The ADC
multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If the
Analog Comparator Multiplexer Enable bit (ACME in SFIOR) is set and the ADC is switched off (ADEN in ADCSRA
is zero), MUX2:0 in ADMUX select the input pin to replace the negative input to the Analog Comparator, as shown
in Table 22-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog Comparator.

Table 22-1. Analog Comparator Multiplexed Input
ACME ADEN MUX2:0 Analog Comparator Negative Input
0 X XXX AIN1
1 1 XXX AIN1
1 0 000 ADCO
1 0 001 ADCA1
1 0 010 ADC2

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 198

22.3

22.31

22.3.2

ATmega32A

Table 22-1. Analog Comparator Multiplexed Input (Continued)

ACME ADEN MUX2:0 Analog Comparator Negative Input
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

Register Description

SFIOR - Special Function IO Register

Bit 7 6 5 4 3 2 1 0

| Abts2 | ADTs1 | ADTSO | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 3 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC multiplexer
selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1 is applied to the neg-
ative input of the Analog Comparator. For a detailed description of this bit, see “Analog Comparator Multiplexed
Input” on page 198.

ACSR - Analog Comparator Control and Status Register

Bit 7 6 5 4 3 2 1 0
| Aco | AcBc | Aco | Acl | ACIE | AcIC | Acist Aciso | Acsr

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

* Bit 7 — ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit can be set at any
time to turn off the Analog Comparator. This will reduce power consumption in active and Idle mode. When chang-
ing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an
interrupt can occur when the bit is changed.

¢ Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog Comparator. When
this bit is cleared, AINO is applied to the positive input of the Analog Comparator. See “Internal Voltage Reference”
on page 47.

* Bit 5 - ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The synchronization
introduces a delay of 1 - 2 clock cycles.

¢ Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and
ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set. ACI
is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ACl is cleared by
writing a logic one to the flag.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 199

ATmega32A

¢ Bit 3 — ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Comparator Interrupt is
activated. When written logic zero, the interrupt is disabled.

¢ Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be triggered by the Analog
Comparator. The comparator output is in this case directly connected to the Input Capture front-end logic, making
the comparator utilize the noise canceler and edge select features of the Timer/Counter1 Input Capture interrupt.
When written logic zero, no connection between the Analog Comparator and the Input Capture function exists. To
make the comparator trigger the Timer/Counter1 Input Capture interrupt, the TICIE1 bit in the Timer Interrupt Mask
Register (TIMSK) must be set.

¢ Bits 1:0 — ACIS[1:0]: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The different settings
are shown in Table 22-2.

Table 22-2. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge
1 1 Comparator Interrupt on Rising Output Edge

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be disabled by clearing its Interrupt
Enable bit in the ACSR Register. Otherwise an interrupt can occur when the bits are changed.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 200

ATmega32A

23. Analog to Digital Converter

23.1

23.2

Features

* 10-bit Resolution

* 0.5 LSB Integral Non-linearity

» %2 LSB Absolute Accuracy

* 13 - 260 ys Conversion Time

* Up to 15kSPS at Maximum Resolution

* 8 Multiplexed Single Ended Input Channels

« 7 Differential Input Channels

» 2 Differential Input Channels with Optional Gain of 10x and 200x
* Optional Left adjustment for ADC Result Readout

* 0 -Vcc ADC Input Voltage Range

* Selectable 2.56V ADC Reference Voltage

* Free Running or Single Conversion Mode

* ADC Start Conversion by Auto Triggering on Interrupt Sources
* Interrupt on ADC Conversion Complete

* Sleep Mode Noise Canceler

Overview

The ATmega32A features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel Analog
Multiplexer which allows 8 single-ended voltage inputs constructed from the pins of Port A. The single-ended volt-
age inputs refer to OV (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs (ADC1, ADCO
and ADC3, ADC2) are equipped with a programmable gain stage, providing amplification steps of 0 dB (1x), 20 dB
(10x), or 46 dB (200x) on the differential input voltage before the A/D conversion. Seven differential analog input
channels share a common negative terminal (ADC1), while any other ADC input can be selected as the positive
input terminal. If 1x or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can
be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is held at a constant
level during conversion. A block diagram of the ADC is shown in Figure 23-1.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than +0.3V from V.. See
the paragraph “ADC Noise Canceler” on page 208 on how to connect this pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage reference may be exter-
nally decoupled at the AREF pin by a capacitor for better noise performance.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 201

ATmega32A

Figure 23-1. Analog to Digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS

ADTS[2:0]
_,8BIT DATABUS

) v v A

ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)

% u 9 N

\/

ADIF
ADIE

\A 4

REFS1
REFS0
ADLAR
MUX4
MUX3
MUX1
MUX0

ADEN
ADSC

=]
=

ADIF

< o
=] o
< <

ADPS1
ADPSO

TRIGGER
SELECT

ADC[90] \ |

YY

YYYYVYY

MUX DECODER ‘ A, A,

PRESCALER |¢——
START
A,

CONVERSION LOGIC

<

CHANNEL SELECTION
GAIN SELECTION

AVCC I:Ii 3

INTERNAL 2.56V ||
REFERENCE

AREF

|<
[«

\ SAMPLE & HOLD

COMPARATOR
10-BIT DAC

-

1

BANDGAP
REFERENCE
ADC7 I:'i
N SINGLE ENDED / DIFFERENTIAL SELECTION
ADC6 I:'i
POS. ADC MULTIPLEXER
ADC5 gyt ° » OUTPUT
MUX
ADC4 I:'i v
ADG3 I:'i GAIN
NY AMPLIFIER —
ADC2)
ADCH
ADCO L
NEG.
INPUT
MUX

23.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The mini-
mum value represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB.
Optionally, AVCC or an internal 2.56V reference voltage may be connected to the AREF pin by writing to the
REFSn bits in the ADMUX Register. The internal voltage reference may thus be decoupled by an external capaci-
tor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in ADMUX. Any of the ADC
input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended inputs to the
ADC. A selection of ADC input pins can be selected as positive and negative inputs to the differential gain
amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage difference between the
selected input channel pair by the selected gain factor. This amplified value then becomes the analog input to the
ADC. If single ended channels are used, the gain amplifier is bypassed altogether.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 202

23.4

ATmega32A

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and input channel selec-
tions will not go into effect until ADEN is set. The ADC does not consume power when ADEN is cleared, so it is
recommended to switch off the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By default,
the result is presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in
ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH, to ensure that the content of the Data Registers belongs to the same conver-
sion. Once ADCL is read, ADC access to Data Registers is blocked. This means that if ADCL has been read, and
a conversion completes before ADCH is read, neither register is updated and the result from the conversion is lost.
When ADCH is read, ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access to the
Data Registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is lost.

Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high as
long as the conversion is in progress and will be cleared by hardware when the conversion is completed. If a differ-
ent data channel is selected while a conversion is in progress, the ADC will finish the current conversion before
performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is enabled by setting
the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC Trigger
Select bits, ADTS in SFIOR (see description of the ADTS bits for a list of the trigger sources). When a positive
edge occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is started. This provides a
method of starting conversions at fixed intervals. If the trigger signal still is set when the conversion completes, a
new conversion will not be started. If another positive edge occurs on the trigger signal during conversion, the edge
will be ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or the global interrupt
enable bit in SREG is cleared. A conversion can thus be triggered without causing an interrupt. However, the Inter-
rupt Flag must be cleared in order to trigger a new conversion at the next interrupt event.

Figure 23-2. ADC Auto Trigger Logic

ADTS[2:0]
——P| PRESCALER
START CLK,oc
ADIF — ADATE
SOURCE 1 —— L
----- 5 } CONVERSION
..... LOGIC
----- EDGE
SOURCE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon as the ongoing
conversion has finished. The ADC then operates in Free Running mode, constantly sampling and updating the
ADC Data Register. The first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 203

23.5

ATmega32A

this mode the ADC will perform successive conversions independently of whether the ADC Interrupt Flag, ADIF is
cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can
also be used to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion,
independently of how the conversion was started.

Prescaling and Conversion Timing

Figure 23-3. ADC Prescaler

ADEN
START Reset
7-BIT ADC PRESCALER

CK — >
[ee]
o 3| g S| 8 gl o
¥4 IEv4 Bv4 B B v R
Of O] O] O] O] O] O
YV VYV V VYV Y
ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 200kHz to
get maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be
higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU fre-
quency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the
moment the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as
the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the follow-
ing rising edge of the ADC clock cycle. See “Differential Gain Channels” on page 206 for details on differential
conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADC-
SRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conversion and 13.5 ADC
clock cycles after the start of a first conversion. When a conversion is complete, the result is written to the ADC
Data Registers, and ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The software may
then set ADSC again, and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay from
the trigger event to the start of conversion. In this mode, the sample-and-hold takes place 2 ADC clock cycles after
the rising edge on the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

When using Differential mode, along with Auto Trigging from a source other than the ADC Conversion Complete,
each conversion will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after every
conversion.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 204

ATmega32A

In Free Running mode, a new conversion will be started immediately after the conversion completes, while ADSC
remains high. For a summary of conversion times, see Table 23-1.

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

First Conversion gifversion

: . : L
Cycle Number \1\2: :12\13\14\15\16\17\18\19\20\21\22\23\24\25\ [1123
A0C lock A SaEpipapipipipipipipipipipipPaiyipiyl
ADEN] o
wso 1] 3 a
ADIF ‘ 3 : : e

/ / 0 :(/ /) 1/

apcH LU i< mss of Result

7
abcL IR, < e of Resut

, | | , |
\ MUX and REFS \ Sample & Hold Conversion /

ADCL 11111/,

Update Complete MUX and REFS
Update
Figure 23-5. ADC Timing Diagram, Single Conversion
One Conversion < Next Conversion
Cycle Number \ 1] 2 | 3| 4| 5| 6| 7| 8] 9] 10 11] 12| 13i \ 1] 2| 3
ADC Clock | ‘ ‘ ‘
ADSC / W
or L -
ADCH /:/ 3 % M:SBof Result
| i // i //7/>:<

LSB of Result

\ \ Sample & Hold Conversion _/)

MUX and REFS Complete MUX and REFS
Update Update

Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion

One Conversion < Next Conversion
Cycle Number \ 1 2 | 3| 4] 5] 6] 7| 8] 9f 10| 11] 12| 13i | 1] 2]
ADC Clock | ‘ |
o /T
ADATE Lo] | |
ADIF ﬁ—
ADCH i / : . // i /M MmSB ‘Of Result
ADCL i // // / /// [T T T LS8 6f Resu
Prescale—/r)j \ T~ Sample & Hold Conversion f) j “ Prescaler
Reset Complete Reset

MUX and REFS
Update

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 205

23.5.1

ATmega32A

Figure 23-7. ADC Timing Diagram, Free Running Conversion

One Conversion

Next Conversion

Cycle Number " ‘ 12‘ 131 1 ‘ ? ‘ 3 ‘ 4 ‘
ADC Clock
ADSC : :
ADIF l \
ADCH / / 7 / //>:< MSB cinf Result
ADCL / /}K LSB o;‘ Result
Conversion / K — Sample & Hold
Complete MUX and REFS

Update

Table 23-1. ADC Conversion Time
Sample & Hold (Cycles
Condition from Start of Conversion) | Conversion Time (Cycles)
First conversion 13.5 25
Normal conversions, single ended 1.5 13
Auto Triggered conversions 2 13.5
Normal conversions, differential 1.5/2.5 13/14

Differential Gain Channels
When using differential gain channels, certain aspects of the conversion need to be taken into consideration.

Differential conversions are synchronized to the internal clock CK,p¢, equal to half the ADC clock. This synchroni-
zation is done automatically by the ADC interface in such a way that the sample-and-hold occurs at a specific
phase of CK,pco- A conversion initiated by the user (that is, all single conversions, and the first free running con-
version) when CK,pc, is low will take the same amount of time as a single ended conversion (13 ADC clock cycles
from the next prescaled clock cycle). A conversion initiated by the user when CK,p, is high will take 14 ADC clock
cycles due to the synchronization mechanism. In Free Running mode, a new conversion is initiated immediately
after the previous conversion completes, and since CK,p, is high at this time, all automatically started (that is, all
but the first) free running conversions will take 14 ADC clock cycles.

The gain stage is optimized for a bandwidth of 4kHz at all gain settings. Higher frequencies may be subjected to
non-linear amplification. An external low-pass filter should be used if the input signal contains higher frequency
components than the gain stage bandwidth. Note that the ADC clock frequency is independent of the gain stage
bandwidth limitation. For example, the ADC clock period may be 6 s, allowing a channel to be sampled at
12kSPS, regardless of the bandwidth of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC must be switched off
between conversions. When Auto Triggering is used, the ADC prescaler is reset before the conversion is started.
Since the gain stage is dependent of a stable ADC clock prior to the conversion, this conversion will not be valid.
By disabling and then re-enabling the ADC between each conversion (writing ADEN in ADCSRA to “0” then to “1”),
only extended conversions are performed. The result from the extended conversions will be valid. See “Prescaling
and Conversion Timing” on page 204 for timing details.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 206

23.6

23.6.1

23.6.2

ATmega32A

Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary register to which the
CPU has random access. This ensures that the channels and reference selection only takes place at a safe point
during the conversion. The channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a sufficient sampling time for
the ADC. Continuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after ADSC is written. The
user is thus advised not to write new channel or reference selection values to ADMUX until one ADC clock cycle
after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special care must be taken
when updating the ADMUX Register, in order to control which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX Register is
changed in this period, the user cannot tell if the next conversion is based on the old or the new settings. ADMUX
can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.

Special care should be taken when changing differential channels. Once a differential channel has been selected,
the gain stage may take as much as 125 s to stabilize to the new value. Thus conversions should not be started
within the first 125 us after selecting a new differential channel. Alternatively, conversion results obtained within
this period should be discarded.

The same settling time should be observed for the first differential conversion after changing ADC reference (by
changing the REFS1:0 bits in ADMUX).

ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure that the correct
channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The channel selection may
be changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the con-
version to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The channel selection may
be changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the first
conversion to complete, and then change the channel selection. Since the next conversion has already started
automatically, the next result will reflect the previous channel selection. Subsequent conversions will reflect the
new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accuracy due to the
required settling time for the automatic offset cancellation circuitry. The user should preferably disregard the first
conversion result.

ADC Voltage Reference
The reference voltage for the ADC (Vggr) indicates the conversion range for the ADC. Single ended channels that
exceed Vggr will result in codes close to 0x3FF. Ve can be selected as either AVCC, internal 2.56V reference, or
external AREF pin.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 207

23.7

23.71

ATmega32A

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is generated from the inter-
nal bandgap reference (Vgg) through an internal amplifier. In either case, the external AREF pin is directly
connected to the ADC, and the reference voltage can be made more immune to noise by connecting a capacitor
between the AREF pin and ground. Vgge can also be measured at the AREF pin with a high impedant voltmeter.
Note that Vggr is a high impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other reference voltage
options in the application, as they will be shorted to the external voltage. If no external voltage is applied to the
AREF pin, the user may switch between AVCC and 2.56V as reference selection. The first ADC conversion result
after switching reference voltage source may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than indicated in Table 28-6
on page 293.

ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced from the
CPU core and other I/O peripherals. The noise canceler can be used with ADC Noise Reduction and Idle mode. To
make use of this feature, the following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion Mode must be selected
and the ADC conversion complete interrupt must be enabled.
2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the CPU has
been halted.
3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the CPU
and execute the ADC Conversion Complete interrupt routine. If another interrupt wakes up the CPU
before the ADC conversion is complete, that interrupt will be executed, and an ADC Conversion Complete
interrupt request will be generated when the ADC conversion completes. The CPU will remain in active
mode until a new sleep command is executed.
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle mode and ADC
Noise Reduction mode. The user is advised to write zero to ADEN before entering such sleep modes to avoid
excessive power consumption. If the ADC is enabled in such sleep modes and the user wants to perform differen-
tial conversions, the user is advised to switch the ADC off and on after waking up from sleep to prompt an
extended conversion to get a valid result.

Analog Input Circuitry
The Analog Input Circuitry for single ended channels is illustrated in Figure 22-8. An analog source applied to
ADCn is subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is
selected as input for the ADC. When the channel is selected, the source must drive the S/H capacitor through the
series resistance (combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or less. If such a source
is used, the sampling time will be negligible. If a source with higher impedance is used, the sampling time will
depend on how long time the source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this minimizes the required charge
transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although source impedances of a
few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fapc/2) should not be present for either kind of channels, to
avoid distortion from unpredictable signal convolution. The user is advised to remove high frequency components
with a low-pass filter before applying the signals as inputs to the ADC.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 208

ATmega32A

Figure 23-8. Analog Input Circuitry

1..100 kQ

ADCn — M L

Cgqy= 14 pF

23.7.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measure-
ments. If conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground
plane, and keep them well away from high-speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital V. supply voltage via an LC network as
shown in Figure 23-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not switch while a conversion
is in progress.

Figure 23-9. ADC Power Connections

—_—_—— e =

CC

>

PA2 (ADC2)
PA3 (ADC3)

o
=z
o

Analog Ground Plane

j PA4 (ADC4)
|| Pas (aDcH)
j PA6 (ADC6)
j PA7 (ADC7)
|] ArerF

10uH

100nF

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 209

ATmega32A

23.7.3 Offset Compensation Schemes
The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential measurements as much
as possible. The remaining offset in the analog path can be measured directly by selecting the same channel for
both differential inputs. This offset residue can be then subtracted in software from the measurement results. Using
this kind of software based offset correction, offset on any channel can be reduced below one LSB.

23.7.4 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and Vggg in 2" steps (LSBs). The lowest code
is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:
« Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSB). Ideal
value: 0 LSB.
Figure 23-10. Offset Error

Output Codeh

fffff Ideal ADC
—— Actual ADC

Vger Input Voltage

» Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last transition (Ox3FE to
0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 23-11. Gain Error

OutputCoded . . Gain
Error™:

fffff Ideal ADC
Actual ADC

[

Vger Input Voltage

* Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum deviation of an
actual transition compared to an ideal transition for any code. Ideal value: 0 LSB.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 210

ATmega32A

Figure 23-12. Integral Non-linearity (INL)

Output Code A

N

77777 Ideal ADC
Actual ADC

[y

VREFVInput Voltage

« Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval between two
adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 23-13. Differential Non-linearity (DNL)

Output Code A
O0x3FF

[

0 Vger Input Voltage

» Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a range of input
voltages (1 LSB wide) will code to the same value. Always +0.5 LSB.

» Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to an ideal transition

for any code. This is the compound effect of Offset, Gain Error, Differential Error, Non-linearity, and Quantization
Error. Ideal value: £0.5 LSB.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 211

ATmega32A

23.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC Result Registers
(ADCL, ADCH).

For single ended conversion, the result is

V.- 1024
ADC = N7
VREF

where V| is the voltage on the selected input pin and Vggr the selected voltage reference (see Table 23-3 on page
214 and Table 23-4 on page 214). 0x000 represents analog ground, and Ox3FF represents the selected reference
voltage minus one LSB.

If differential channels are used, the result is

Voos—V - GAIN - 512
ADC = (Vpos—Veg)

VREF

where Vpqg is the voltage on the positive input pin, Vygg the voltage on the negative input pin, GAIN the selected
gain factor, and Vggr the selected voltage reference. The result is presented in two’s complement form, from 0x200
(-512d) through Ox1FF (+511d). Note that if the user wants to perform a quick polarity check of the results, it is suf-
ficient to read the MSB of the result (ADC9 in ADCH). If this bit is one, the result is negative, and if this bit is zero,
the result is positive. Figure 23-14 shows the decoding of the differential input range.

Table 23-2 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is selected with a
gain of GAIN and a reference voltage of Vggr.

Figure 23-14. Differential Measurement Range

Output Code
Ox1FF

T >2—v—v—v—>‘ -
(Vper/GAIN Differential Input

[
- Ve /GAIN
i Voltage (Volts)

0x200

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 212

ATmega32A

Table 23-2. Correlation between Input Voltage and Output Codes

Vapen Read code Corresponding Decimal Value
Vapem + Vree/GAIN Ox1FF 511

Vabcm + 511/512 Vee/GAIN Ox1FF 511

Vapcm + 510/512 Vgee/GAIN Ox1FE 510

Vapem + 11512 Vgee/GAIN 0x001 1

Vabcm 0x000 0

Vapem - 1/512 Vgee/GAIN Ox3FF -1

Vapcm - 511/512 Vgee/GAIN 0x201 -511

Vapcm - Vrer/GAIN 0x200 -512

Example:

ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
ADCR =512 x 10 x (300 - 500) / 2560 = -400 = 0x270
ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts the result:

ADCL = 0x70, ADCH = 0x02.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 213

23.9

23.91

ATmega32A

Register Description

ADMUX — ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0

| REFS1 | REFS0 | ADLAR | Mux4 | MUX3 MUX2 MUX1 MUXo | ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 23-3. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The internal
voltage reference options may not be used if an external reference voltage is being applied to the AREF pin.

Table 23-3. Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

¢ Bit 5—- ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register. Write one to
ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will affect the ADC
Data Register immediately, regardless of any ongoing conversions. For a complete description of this bit, see
“ADCL and ADCH — The ADC Data Register” on page 216.

¢ Bits 4:0 - MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC. These bits also
select the gain for the differential channels. See Table 23-4 for details. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set).

Table 23-4. Input Channel and Gain Selections

Single Ended Positive Differential Negative Differential
MUX4:0 Input Input Input Gain
00000 ADCO
00001 ADCA1
00010 ADC2
00011 ADC3 N/A
00100 ADC4
00101 ADC5
00110 ADCS6
00111 ADC7
01000 ADCO ADCO 10x
01001 ADC1 ADCO 10x
01010 ADCO ADCO 200x
01011 ADC1 ADCO 200x

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 214

23.9.2

ATmega32A

Table 23-4. Input Channel and Gain Selections (Continued)

Single Ended Positive Differential Negative Differential
MUX4:0 Input Input Input Gain
01100 ADC2 ADC2 10x
01101 ADC3 ADC2 10x
01110 ADC2 ADC2 200x
01111 ADC3 ADC2 200x
10000 ADCO ADC1 1x
10001 ADCA1 ADC1 1x
10010 N/A ADC2 ADC1 1x
10011 ADC3 ADC1 1x
10100 ADC4 ADC1 1x
10101 ADC5 ADC1 1x
10110 ADCS6 ADC1 1x
10111 ADC7 ADC1 1x
11000 ADCO ADC2 1x
11001 ADC1 ADC2 1x
11010 ADC2 ADC2 1x
11011 ADC3 ADC2 1x
11100 ADC4 ADC2 1x
11101 ADC5 ADC2 1x
11110 1.22V (Vgg) N/A
11111 0V (GND)

ADCSRA - ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0
| ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 ADPS1 ADPSO | ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off while a con-
version is in progress, will terminate this conversion.

¢ Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running Mode, write this bit to
one to start the first conversion. The first conversion after ADSC has been written after the ADC has been enabled,
or if ADSC is written at the same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to zero.
Writing zero to this bit has no effect.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 215

ATmega32A

* Bit 5 - ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a conversion on a positive
edge of the selected trigger signal. The trigger source is selected by setting the ADC Trigger Select bits, ADTS in

SFIOR.

¢ Bit 4 — ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The ADC Conversion
Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the
flag. Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be disabled. This also applies

if the SBI and CBI instructions are used.

¢ Bit 3 — ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is activated.

* Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.

Table 23-5. ADC Prescaler Selections
ADPS2 ADPS1 ADPSO0 Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
2393 ADCL and ADCH - The ADC Data Register
23.9.3.1 ADLAR =0
Bit 15 14 13 12 1 10 9 8
- - — — - - ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCA1 ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 216

ATmega32A

23.9.3.2 ADLAR =1

2394

Bit 15 14 13 12 11 10 9 8
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differential channels are used,
the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left
adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read
first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If
ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

* ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on page 212.

SFIOR - Special FunctionlO Register
Bit 7 6 5 4 3 2 1 0
| ApTs2 | ADTS1 | ADTS0 | - ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:5- ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger an ADC conversion.
If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion will be triggered by the rising edge of
the selected Interrupt Flag. Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching
to Free Running mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Table 23-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTSO0 Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event

* Bit 4 - Reserved Bit
This bit is reserved for future use in the ATmega32A. For ensuring compability with future devices, this bit must be
written zero when SFIOR is written.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 217

ATmega32A

24. JTAG Interface and On-chip Debug System

241

24.2

243

Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:

— All Internal Peripheral Units

— Internal and External RAM

— The Internal Register File

— Program Counter

— EEPROM and Flash Memories

— Extensive On-chip Debug Support for Break Conditions, Including

— AVR Break Instruction

— Break on Change of Program Memory Flow

— Single Step Break

— Program Memory Breakpoints on Single Address or Address Range

— Data Memory Breakpoints on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* On-chip Debugging Supported by Atmel Studio

Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

« Testing PCBs by using the JTAG Boundary-scan capability

* Programming the non-volatile memories, Fuses and Lock bits

» On-chip Debugging
A brief description is given in the following sections. Detailed descriptions for Programming via the JTAG interface,
and using the Boundary-scan Chain can be found in the sections “Programming via the JTAG Interface” on page
274 and “IEEE 1149.1 (JTAG) Boundary-scan” on page 224, respectively. The On-chip Debug support is consid-
ered being private JTAG instructions, and distributed within Microchip and to selected third party vendors only.

Figure 24-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The TAP Controller is a
state machine controlled by the TCK and TMS signals. The TAP Controller selects either the JTAG Instruction
Register or one of several Data Registers as the scan chain (Shift Register) between the TDI input and TDO out-
put. The Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used for board-level test-
ing. The JTAG Programming Interface (actually consisting of several physical and virtual Data Registers) is used
for JTAG Serial Programming via the JTAG interface. The Internal Scan Chain and Break Point Scan Chain are
used for On-chip Debugging only.

TAP — Test Access Port
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins constitute the

Test Access Port — TAP. These pins are:
» TMS: Test Mode Select. This pin is used for navigating through the TAP-controller state machine.
» TCK: Test Clock. JTAG operation is synchronous to TCK.
» TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register (Scan Chains).

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 218

ATmega32A

» TDO: Test Data Out. Serial output data from Instruction Register or Data Register.
The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the TAP controller is in
reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP input signals are internally pulled high
and the JTAG is enabled for Boundary-scan and programming. In this case, the TAP output pin (TDO) is left float-
ing in states where the JTAG TAP controller is not shifting data, and must therefore be connected to a pull-up

resistor or other hardware having pull-ups (for instance the TDI-input of the next device in the scan chain). The
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is monitored by the debug-
ger to be able to detect external reset sources. The debugger can also pull the RESET pin low to reset the whole
system, assuming only open collectors on the reset line are used in the application.

Figure 24-1. Block Diagram

1/0 PORT O

A
DEVICE BOUNDARY Y

BOUNDARY SCAN CHAIN

™
00 <L p JTAG PROGRAMMING
N TAP INTERFACE
TCK —»| | CONTROLLER
™s > A
i
y % AVR CPU

INTERNAL
FLASH Address [€] gcaN PC
MEMORY Data [% cHAIN Instruction
REGISTER
|
REGISTER BREAKPOINT [«

UNIT

> >
BYPASS r FLOWUC’\ﬁrTROL
REGISTER DIGITAL
PERIPHERAL <>
BREAKPOINT
SCAN CHAIN

UNITS
v JTAG / AVR CORE

MMUNICATION
ADDRESS COINTERFCACEO
DECODER OCD STATUS |

> AND CONTROL

A

Y

xXc=x

A A

ANALOG
PERIPHERIAL
UNITS
Analog inputs

Y

A
Control & Clock lines

1/0 PORT n

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 219

ATmega32A

Figure 24-2. TAP Controller State Diagram

1 C Test-Logic-Reset

0
A
0 1 1 N 1
Run-Test/Idle P Select-DR Scan P Select-IR Scan
y
0 0
A A 4
1 1
— Capture-DR — Capture-IR
0 0
A
» shiftDR D 0 » Shift-IR D 0
1 1
v A 4
. 1 . 1
P Exitl-DR P Exitl-IR
0 0
Pause-DR :) 0 Pause-IR D 0
1 1
A 4 v
O Exit2-DR 0 Exit2-IR
1 1
A 4 A 4
Update-DR < Update-IR <
1 0 1 0

24.4 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-scan circuitry,
JTAG programming circuitry, or On-chip Debug system. The state transitions depicted in Figure 24-2 depend on
the signal present on TMS (shown adjacent to each state transition) at the time of the rising edge at TCK. The ini-
tial state after a Power-On Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

» At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift Instruction Register
— Shift-IR state. While in this state, shift the four bits of the JTAG instructions into the JTAG Instruction Register
from the TDI input at the rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when this state is left by setting
TMS high. While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 220

24.5

24.6

ATmega32A

TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and TDO and controls
the circuitry surrounding the selected Data Register.

» Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched onto the parallel
output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-IR, and Exit2-IR states are only
used for navigating the state machine.

» At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data Register — Shift-
DR state. While in this state, upload the selected Data Register (selected by the present JTAG instruction in the
JTAG Instruction Register) from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of the data is shifted in when
this state is left by setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to
the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

» Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register has a latched
parallel-output, the latching takes place in the Update-DR state. The Exit-DR, Pause-DR, and Exit2-DR states
are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting JTAG instruction
and using Data Registers, and some JTAG instructions may select certain functions to be performed in the Run-
Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be entered by holding TMS
high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography” on page 223.

Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1 (JTAG) Boundary-
scan” on page 224.

Using the On-chip Debug System

As shown in Figure 24-1, the hardware support for On-chip Debugging consists mainly of:
* A scan chain on the interface between the internal AVR CPU and the internal peripheral units
* Break Point unit
« Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying AVR instructions
via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O memory mapped location which is part
of the communication interface between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, 2 Program Memory Break
Points, and 2 combined Break Points. Together, the 4 Break Points can be configured as either:

* 4 single Program Memory Break Points

+ 3 Single Program Memory Break Point + 1 single Data Memory Break Point

* 2 single Program Memory Break Points + 2 single Data Memory Break Points

* 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range Break Point”)

* 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break Point”)
A debugger, like the Atmel Studio, may however use one or more of these resources for its internal purpose, leav-
ing less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG Instructions” on
page 222.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 221

24.7

24.71

24.7.2

24.7.3

24.7.4

24.8

ATmega32A

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the OCDEN Fuse must
be programmed and no Lock bits must be set for the On-chip Debug system to work. As a security feature, the On-
chip Debug system is disabled when any Lock bits are set. Otherwise, the On-chip Debug system would have pro-
vided a back-door into a secured device.

The AVR JTAG ICE is a powerful development tool for On-chip Debugging of all AVR 8-bit RISC Microcontrollers
with IEEE 1149.1 compliant JTAG interface. The JTAG ICE and the Atmel Studio user interface give the user com-
plete control of the internal resources of the microcontroller, helping to reduce development time by making
debugging easier. The JTAG ICE performs real-time emulation of the micrcontroller while it is running in a target
system.

Refer to the Support Tools section on the AVR pages on www.microchip.com for a full description of the AVR
JTEG ICE. Atmel Studio can be downloaded free from Software section on the same web site.

All necessary execution commands are available in Atmel Studio, both on source level and on disassembly level.
The user can execute the program, single step through the code either by tracing into or stepping over functions,
step out of functions, place the cursor on a statement and execute until the statement is reached, stop the execu-
tion, and reset the execution target. In addition, the user can have an unlimited number of code breakpoints (using
the BREAK instruction) and up to two data memory breakpoints, alternatively combined as a mask (range) Break
Point.

On-chip Debug Specific JTAG Instructions

The On-chip Debug support is considered being private JTAG instructions, and distributed within Microchip and to
selected third party vendors only. Instruction opcodes are listed for reference.

PRIVATEO; $8
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE1; $9
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE2; $A
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE3; $B
Private JTAG instruction for accessing On-chip Debug system.

Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI and TDO. These are
the only pins that need to be controlled/observed to perform JTAG programming (in addition to power pins). It is not
required to apply 12V externally. The JTAGEN fuse must be programmed and the JTD bit in the MCUSR Register
must be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:
* Flash programming and verifying
+ EEPROM programming and verifying
* Fuse programming and verifying
* Lock bit programming and verifying
The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are programmed, the

OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a security feature that ensures no
back-door exists for reading out the content of a secured device.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 222

24.9

2491

2410

ATmega32A

The details on programming through the JTAG interface and programming specific JTAG instructions are given in
the section “Programming via the JTAG Interface” on page 274.

Register Description

OCDR - On-chip Debug Register

Bit 7 6 5 4 3 2 1 0

| mseipbrD | | LsB | OCDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the microcontroller to the
debugger. The CPU can transfer a byte to the debugger by writing to this location. At the same time, an Internal
Flag; /0 Debug Register Dirty — IDRD - is set to indicate to the debugger that the register has been written. When
the CPU reads the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The
debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard 1/O location. In this case, the OCDR Register can only
be accessed if the OCDEN Fuse is programmed, and the debugger enables access to the OCDR Register. In all
other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Bibliography

For more information about general Boundary-scan, the following literature can be consulted:
« |IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan Architecture, IEEE, 1993
* Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 223

ATmega32A

25. IEEE 1149.1 (JTAG) Boundary-scan

25.1

25.2

25.3

Features

* JTAG (IEEE std. 1149.1 Compliant) Interface

* Boundary-scan Capabilities According to the JTAG Standard

* Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
* Supports the Optional IDCODE Instruction

* Additional Public AVR_RESET Instruction to Reset the AVR

Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digital I/O pins, as well
as the boundary between digital and analog logic for analog circuitry having Off-chip connections. At system level,
all ICs having JTAG capabilities are connected serially by the TDI/TDO signals to form a long Shift Register. An
external controller sets up the devices to drive values at their output pins, and observe the input values received
from other devices. The controller compares the received data with the expected result. In this way, Boundary-scan
provides a mechanism for testing interconnections and integrity of components on Printed Circuits Boards by using
the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRELOAD, and
EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be used for testing the Printed Cir-
cuit Board. Initial scanning of the Data Register path will show the ID-code of the device, since IDCODE is the
default JTAG instruction. It may be desirable to have the AVR device in Reset during Test mode. If not reset, inputs
to the device may be determined by the scan operations, and the internal software may be in an undetermined
state when exiting the Test mode. Entering reset, the outputs of any Port Pin will instantly enter the high imped-
ance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to make the
shortest possible scan chain through the device. The device can be set in the reset state either by pulling the exter-
nal RESET pin low, or issuing the AVR_RESET instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data. The data from the
output latch will be driven out on the pins as soon as the EXTEST instruction is loaded into the JTAG IR-Register.
Therefore, the SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to avoid damag-
ing the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD can also be used for
taking a snapshot of the external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I1/0O Register MCUCSR must be cleared to enable
the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher than the internal
chip frequency is possible. The chip clock is not required to run.

Data Registers
The Data Registers relevant for Boundary-scan operations are:
* Bypass Register
* Device Identification Register
* Reset Register
» Boundary-scan Chain

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 224

ATmega32A

25.31 Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass Register is selected as path
between TDI and TDO, the register is reset to 0 when leaving the Capture-DR controller state. The Bypass Regis-
ter can be used to shorten the scan chain on a system when the other devices are to be tested.

25.3.2 Device Identification Register
Figure 25-1 shows the structure of the Device Identification Register.

Figure 25-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 N 1 0
Device ID I Version Part Number Manufacturer ID 1 I
4 bits 16 bits 11 bits 1 bit

25.3.2.1 Version

Version is a 4-bit number identifying the revision of the component. The JTAG version number follows the revision
of the device. Revision A is 0x0, revision B is x1 and so on.

25.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for ATmega32A is listed in

Table 25-1.

Table 25-1. AVR JTAG Part Number
Part Number JTAG Part Number (Hex)
ATmega32A 0x9502

25.3.2.3 Manufacturer ID
The Manufacturer ID is a 11 bit code identifying the manufacturer. The JTAG manufacturer ID is listed in Table 25-

2.
Table 25-2. Manufacturer ID
JTAG Manufacturer ID (Hex)
0x01F

25.3.3 Reset Register

The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states Port Pins when reset,
the Reset Register can also replace the function of the unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The part is reset as long as there
is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the part will
remain reset for a Reset Time-Out Period (refer to “Clock Sources” on page 32) after releasing the Reset Register.
The output from this Data Register is not latched, so the reset will take place immediately, as shown in Figure 25-2.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 225

2534

254

2541

254.2

ATmega32A

Figure 25-2. Reset Register

To
TDO

From other Internal and
External Reset Sources

From i)—» Internal Reset
D Q

o

ClockDR - AVR_RESET

Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the digital 1/O pins, as well
as the boundary between digital and analog logic for analog circuitry having Off-chip connections.

See “Boundary-scan Chain” on page 227 for a complete description.

Boundary-scan Specific JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG instructions useful
for Boundary-scan operation. Note that the optional HIGHZ instruction is not implemented, but all outputs with tri-
state capability can be set in high-impedance state by using the AVR_RESET instruction, since the initial state for
all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which
Data Register is selected as path between TDI and TDO for each instruction.

EXTEST; $0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing circuitry external to
the AVR package. For port-pins, Pull-up Disable, Output Control, Output Data, and Input Data are all accessible in
the scan chain. For Analog circuits having Off-chip connections, the interface between the analog and the digital
logic is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is driven out as soon as
the JTAG IR-register is loaded with the EXTEST instruction.

The active states are:
» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

+ Shift-DR: The Internal Scan Chain is shifted by the TCK input.
» Update-DR: Data from the scan chain is applied to output pins.

IDCODE; $1
Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-register consists of a version
number, a device number and the manufacturer code chosen by JEDEC. This is the default instruction after power-

up.

The active states are:
» Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan Chain.
+ Shift-DR: The IDCODE scan chain is shifted by the TCK input.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 226

2543

25.4.4

2545

25.5

25.5.1

ATmega32A

SAMPLE_PRELOAD; $2
Mandatory JTAG instruction for pre-loading the output latches and talking a snap-shot of the input/output pins with-
out affecting the system operation. However, the output latches are not connected to the pins. The Boundary-scan
Chain is selected as Data Register.

The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
 Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

» Update-DR: Data from the Boundary-scan Chain is applied to the output latches. However, the output latches
are not connected to the pins.

AVR_RESET; $C
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or releasing the JTAG
Reset source. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as Data
Register. Note that the reset will be active as long as there is a logic 'one' in the Reset Chain. The output from this
chain is not latched.

The active states are:

» Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; $F
Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

» Capture-DR: Loads a logic “0” into the Bypass Register.
« Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan Chain
The Boundary-scan chain has the capability of driving and observing the logic levels on the digital I/O pins, as well
as the boundary between digital and analog logic for analog circuitry having Off-chip connection.

Scanning the Digital Port Pins
Figure 25-3 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The cell consists of a
standard Boundary-scan cell for the Pull-up Enable — PUExn — function, and a bi-directional pin cell that combines
the three signals Output Control — OCxn, Output Data — ODxn, and Input Data — IDxn, into only a two-stage Shift
Register. The port and pin indexes are not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 25-4 shows a simple digital Port Pin
as described in the section “I/O Ports” on page 56. The Boundary-scan details from Figure 25-3 replaces the
dashed box in Figure 25-4.

When no alternate port function is present, the Input Data — ID — corresponds to the PINxn Register value (but ID
has no synchronizer), Output Data corresponds to the PORT Register, Output Control corresponds to the Data
Direction — DD Register, and the Pull-up Enable — PUExn — corresponds to logic expression PUD - DDxn -
PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 25-4 to make the scan chain read the
actual pin value. For Analog function, there is a direct connection from the external pin to the analog circuit, and a
scan chain is inserted on the interface between the digital logic and the analog circuitry.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 227

ATmega32A

Figure 25-3. Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function

ShiftDR To Next Cell EXTEST Vee
N

Pullup Enable (PUE)

>

Output Control (OC)

FF1 LD1 0
0
D Q D Q 1
1
>—| —1 G

Output Data (OD)

FFO LDO 0
>—D D Port Pin (PXn)
D

Input Data (ID)

From Last Cell ClockDR UpdateDR

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 228

25.5.2

ATmega32A

Figure 25-4. General Port Pin Schematic Diagram'"

. I
| :} i PUExn /_k PUD
I —
| | e
| | DDxs
3., <—|
| | REISET Wox
| | OCxn
> el i e
| 2z RDx
i | L,
| | %)
| 2
@ 1+ 2
| \I | ODxn PORTxn <
S G.. <—|_ |<_E
IDxn I WPx o
RESET
SLEEP C RRx
SYNCHRONIZER
| —————— RPx
)~ b of—JDp a _|_| ;’
|I/ | PIN |
| ’7 L T > 3 |
|_ _____ f CLKyo
PUD: PULLUP DISABLE WDx: WRITE DDRx
PUEXxn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
OCxn: OUTPUT CONTROL for pin Pxn WPXx: WRITE PORTx
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pln Pxn RPx: READ PORTx PIN
SLEEP: SLEEP CONTROL CLKyo: 1/0 CLOCK

Note: 1. See Boundary-scan description for details.

Boundary-scan and the Two-wire Interface

The 2 Two-wire Interface pins SCL and SDA have one additional control signal in the scan-chain; Two-wire Inter-
face Enable — TWIEN. As shown in Figure 25-5, the TWIEN signal enables a tri-state buffer with slew-rate control
in parallel with the ordinary digital port pins. A general scan cell as shown in Figure 25-9 is attached to the TWIEN

signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordinary scan support for digital
port pins suffice for connectivity tests. The only reason for having TWIEN in the scan path, is to be able to discon-

nect the slew-rate control buffer when doing boundary-scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to drive contention.

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 229

25.5.3

25.5.4

ATmega32A

Figure 25-5. Additional Scan Signal for the Two-wire Interface

b OQ PUExn

OCxn

Pxn * TWIEN
<
Slew-rate Limited
IDxn

Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high logic for High Voltage
Parallel Programming. An observe-only cell as shown in Figure 25-6 is inserted both for the 5V reset signal; RSTT,
and the 12V reset signal; RSTHV.

Figure 25-6. Observe-only Cell

To
Next
ShiftDR Cell
From System Pin > *] I > To System Logic
FF1
D Q

From ClockDR
Previous
Cell

Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscillator, External RC,
External Clock, (High Frequency) Crystal Oscillator, Low Frequency Crystal Oscillator, and Ceramic Resonator.

Figure 25-7 shows how each Oscillator with external connection is supported in the scan chain. The Enable signal
is supported with a general boundary-scan cell, while the Oscillator/Clock output is attached to an observe-only
cell. In addition to the main clock, the Timer Oscillator is scanned in the same way. The output from the internal RC
Oscillator is not scanned, as this Oscillator does not have external connections.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 230

25.5.5

ATmega32A

Figure 25-7. Boundary-scan Cells for Oscillators and Clock Options
XTAL1/TOSC1 XTAL2/TOSC2

To

Next To
o ShiftDR Cell EXTEST Oscillator Next
) ShiftbR Cell 0
2 3
©)
=) 0 I T 5
e ENABLE OUTPUT I3
§ %)
& e

1
FF1
D QD Q
lﬁ e D Q

From ClockDR UpdateDR
Previous From ClockDR
Cell Previous
Cell

Table 25-3 summaries the scan registers for the external clock pin XTAL1, Oscillators with XTAL1/XTAL2 connec-
tions as well as 32kHz Timer Oscillator.

Table 25-3. Scan Signals for the Oscillators(V)(2®)

Scanned Clock Line

Enable Signal | Scanned Clock Line | Clock Option when not Used
EXTCLKEN EXTCLK (XTAL1) External Clock 0
OSCON OSCCK External Crystal 0

External Ceramic

Resonator
RCOSCEN RCCK External RC 1
OSC32EN 0OSC32CK Low Freq. External Crystal 0
TOSKON TOSCK 32kHz Timer Oscillator 0

Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between the Internal Oscilla-
tor and the JTAG TCK clock. If possible, scanning an external clock is preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock configuration is con-
sidered fixed for a given application. The user is advised to scan the same clock option as to be used in the final
system. The enable signals are supported in the scan chain because the system logic can disable clock options in
sleep modes, thereby disconnecting the Oscillator pins from the scan path if not provided. The INTCAP fuses are
not supported in the scan-chain, so the boundary scan chain can not make a XTAL Oscillator requiring internal
capacitors to run unless the fuse is correctly programmed.

Scanning the Analog Comparator
The relevant Comparator signals regarding Boundary-scan are shown in Figure 25-8. The Boundary-scan cell from
Figure 25-9 is attached to each of these signals. The signals are described in Table 25-4.

The Comparator need not be used for pure connectivity testing, since all analog inputs are shared with a digital
port pin as well.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 231

ATmega32A

Figure 25-8. Analog Comparator

BANDGAP
REFERENCE vCcC
ACBG
ACD —>»
AINO

ACO

AC_IDLE

ACME
ADC MULTIPLEXER
OUTPUT

Pl

Figure 25-9. General Boundary-scan Cell used for Signals for Comparator and ADC

To
Next
ShiftDR Cell EXTEST
From Digital Logic/ ¢ { 0
From Analog Ciruitry To Analog Circuitry/
1 To Digital Logic
0
D Q Q
1
— G
From ClockDR UpdateDR
Previous

Cell

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 232

ATmega32A

Table 25-4. Boundary-scan Signals for the Analog Comparator
Signal Direction as Seen from Recommended Input Output Values when
Name the Comparator Description when Not in Use Recommended Inputs are Used
AC_IDLE Input Turns off Analog 1 Depends upon puC code being
comparator when true executed
ACO Output Analog Comparator Will become inputtouC | 0
Output code being executed
ACME Input Uses output signal from 0 Depends upon uC code being
ADC mux when true executed
ACBG Input Bandgap Reference 0 Depends upon uC code being
enable executed
25.5.6 Scanning the ADC

Figure 25-10 shows a block diagram of the ADC with all relevant control and observe signals. The Boundary-scan cell from
Figure 25-9 is attached to each of these signals. The ADC need not be used for pure connectivity testing, since all analog
inputs are shared with a digital port pin as well.

Figure 25-10. Analog to Digital Converter

NEGSEL_2

NEGSEL _1

NEGSEL_O

VCCREN

AREF

IREFEN

» To Comparator

PASSEN ,j/
Y S
G S
SCTEST ADCBGEN
i :
— N > PRECH ..., -
G S —‘
i
: ; y DA ..
> C_9.0 10-bit DAC ® +
S Glo, .l
ADCEN
’ﬁ/ e — :[
+ —
10x -
_ADC_2) HOLD —
ADC_1)
- ST,
:ADC*O) ACLK

AMPEN

The signals are described briefly in Table 25-5.

DACOUT

compP

COMP

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 233

ATmega32A

Table 25-5. Boundary-scan Signals for the ADC

Recommended | Output Values when Recommended

Signal Direction as Seen Input when Not | Inputs are used, and CPU is not
Name from the ADC Description in Use Using the ADC
COMP Output Comparator Output 0 0
ACLK Input Clock signal to gain stages 0 0
implemented as Switch-cap filters
ACTEN Input Enable path from gain stages to 0 0
the comparator
ADCBGEN | Input Enable Band-gap reference as 0 0
negative input to comparator
ADCEN Input Power-on signal to the ADC 0 0
AMPEN Input Power-on signal to the gain stages 0 0
DAC_9 Input Bit 9 of digital value to DAC 1 1
DAC_8 Input Bit 8 of digital value to DAC 0 0
DAC_7 Input Bit 7 of digital value to DAC 0 0
DAC 6 Input Bit 6 of digital value to DAC 0 0
DAC 5 Input Bit 5 of digital value to DAC 0 0
DAC 4 Input Bit 4 of digital value to DAC 0 0
DAC_3 Input Bit 3 of digital value to DAC 0 0
DAC_2 Input Bit 2 of digital value to DAC 0 0
DAC_1 Input Bit 1 of digital value to DAC 0 0
DAC 0 Input Bit O of digital value to DAC 0 0
EXTCH Input Connect ADC channels 0 - 3 to by- 1 1
pass path around gain stages
G10 Input Enable 10x gain 0 0
G20 Input Enable 20x gain 0 0
GNDEN Input Ground the negative input to 0 0

comparator when true

HOLD Input Sample&Hold signal. Sample 1 1
analog signal when low. Hold
signal when high. If gain stages
are used, this signal must go
active when ACLK is high.

IREFEN Input Enables Band-gap reference as 0 0
AREF signal to DAC
MUXEN_7 Input Input Mux bit 7 0 0
MUXEN_6 Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 234

ATmega32A

Table 25-5. Boundary-scan Signals for the ADC (Continued)

Recommended | Output Values when Recommended

Signal Direction as Seen Input when Not | Inputs are used, and CPU is not

Name from the ADC Description in Use Using the ADC

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit O 1 1

NEGSEL_2 | Input Input Mux for negative input for 0 0
differential signal, bit 2

NEGSEL_1 | Input Input Mux for negative input for 0 0
differential signal, bit 1

NEGSEL_O | Input Input Mux for negative input for 0 0
differential signal, bit 0

PASSEN Input Enable pass-gate of gain stages. 1 1

PRECH Input Precharge output latch of 1 1
comparator. (Active low)

SCTEST Input Switch-cap TEST enable. Output 0 0

from x10 gain stage send out to
Port Pin having ADC_4

ST Input Output of gain stages will settle 0 0
faster if this signal is high first two
ACLK periods after AMPEN goes
high.

VCCREN Input Selects Vcc as the ACC reference 0 0
voltage.

Note: Incorrect setting of the switches in Figure 25-10 will make signal contention and may damage the part. There are several input
choices to the S&H circuitry on the negative input of the output comparator in Figure 25-10. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 235

ATmega32A

If the ADC is not to be used during scan, the recommended input values from Table 25-5 should be used. The user
is recommended not to use the Differential Gain stages during scan. Switch-cap based gain stages require fast
operation and accurate timing which is difficult to obtain when used in a scan chain. Details concerning operations
of the differential gain stage is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 25-10 with a successive approximation algorithm
implemented in the digital logic. When used in Boundary-scan, the problem is usually to ensure that an applied
analog voltage is measured within some limits. This can easily be done without running a successive approxima-
tion algorithm: apply the lower limit on the digital DAC[9:0] lines, make sure the output from the comparator is low,
then apply the upper limit on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with a digital port pin as
well.

When using the ADC, remember the following:

» The Port Pin for the ADC channel in use must be configured to be an input with pull-up disabled to avoid signal
contention.

* In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when enabling the ADC.
The user is advised to wait at least 200 ns after enabling the ADC before controlling/observing any ADC signal,
or perform a dummy conversion before using the first result.

» The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low (Sample mode).

As an example, consider the task of verifying a 1.5V £5% input signal at ADC channel 3 when the power supply is
5.0V and AREF is externally connected to V.

The lower limitis: [1024 -1.5V-0,95/5V] = 291 = 0x123
The upper limitis: [1024 - 1.5V -1.05/5V] = 323 = 0x143

The recommended values from Table 25-5 are used unless other values are given in the algorithm in Table 25-6.
Only the DAC and Port Pin values of the Scan-chain are shown. The column “Actions” describes what JTAG
instruction to be used before filling the Boundary-scan Register with the succeeding columns. The verification
should be done on the data scanned out when scanning in the data on the same row in the table.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 236

25.6

ATmega32A

Table 25-6. Algorithm for Using the ADC

PA3.
PA3. PA3. Pullup_
Step Actions ADCEN DAC MUXEN HOLD PRECH Data Control Enable

1 SAMPLE_ 1 0x200 0x08 1 1 0 0 0

PRELOAD
2 EXTEST 1 0x200 0x08 0 1 0 0 0
3 1 0x200 0x08 1 1 0 0 0
4 1 0x123 0x08 1 1 0 0 0
5 1 0x123 0x08 1 0 0 0 0
6 Verify the 1 0x200 0x08 1 1 0 0 0

COMP bit

scanned

out to be 0
7 1 0x200 0x08 0 1 0 0 0
8 1 0x200 0x08 1 1 0 0 0
9 1 0x143 0x08 1 1 0 0 0
10 1 0x143 0x08 1 0 0 0 0
1 Verify the 1 0x200 0x08 1 1 0 0 0

COMP bit

scanned

out to be 1

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock frequency. As the algo-
rithm keeps HOLD high for five steps, the TCK clock frequency has to be at least five times the number of scan bits
divided by the maximum hold time, t,,4 max-

ATmega32A Boundary-scan Order

Table 25-7 shows the scan order between TDI and TDO when the Boundary-scan chain is selected as data path.
Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The scan order follows the pin-out order as far
as possible. Therefore, the bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant bits of the scan chain regard-
less of which physical pin they are connected to. In Figure 25-3, PXn. Data corresponds to FF0, PXn. Control
corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan
chain, since these pins constitute the TAP pins when the JTAG is enabled.

Table 25-7. ATmega32A Boundary-scan Order

Bit Number Signal Name Module
140 AC _IDLE Comparator
139 ACO

138 ACME

137 ACBG

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 237

ATmega32A

Table 25-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module
136 COMP ADC
135 PRIVATE_SIGNAL1(")
134 ACLK

133 ACTEN

132 PRIVATE_SIGNAL2?
131 ADCBGEN

130 ADCEN

129 AMPEN

128 DAC_9

127 DAC_8

126 DAC_7

125 DAC_6

124 DAC_5

123 DAC_4

122 DAC_3

121 DAC_2

120 DAC_1

119 DAC_0

118 EXTCH

117 G10

116 G20

115 GNDEN

114 HOLD

113 IREFEN

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 238

ATmega32A

Table 25-7. ATmega32A Boundary-scan Order (Continued)
Bit Number Signal Name Module
112 MUXEN_7
111 MUXEN_6
110 MUXEN_5
109 MUXEN_4
108 MUXEN_3
107 MUXEN_2
106 MUXEN_1
105 MUXEN_O
104 NEGSEL_2
103 NEGSEL_1
102 NEGSEL_0
101 PASSEN
100 PRECH
99 SCTEST
98 ST
97 VCCREN
96 PBO0.Data
95 PBO0.Control
94 PBO.Pullup_Enable
93 PB1.Data
92 PB1.Control
91 PB1.Pullup_Enable
90 PB2.Data
89 PB2.Control
88 PB2.Pullup_Enable
87 PB3.Data
86 PB3.Control
85 PB3.Pullup_Enable
84 PB4.Data
83 PB4.Control
82 PB4.Pullup_Enable

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 239

ATmega32A

Table 25-7. ATmega32A Boundary-scan Order (Continued)
Bit Number Signal Name Module
81 PB5.Data Port B
80 PB5.Control
79 PB5.Pullup_Enable
78 PB6.Data
77 PB6.Control
76 PB6.Pullup_Enable
75 PB7.Data
74 PB7.Control
73 PB7.Pullup_Enable
72 RSTT Reset Logic
71 RSTHV (Observe-Only)
70 EXTCLKEN Enable signals for main clock/Oscillators
69 OSCON
68 RCOSCEN
67 OSC32EN
66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
65 OSCCK (Observe-Only)
64 RCCK
63 0OSC32CK
62 TWIEN TWI
61 PDO0.Data Port D
60 PDO.Control
59 PDO.Pullup_Enable
58 PD1.Data
57 PD1.Control
56 PD1.Pullup_Enable
55 PD2.Data
54 PD2.Control
53 PD2.Pullup_Enable
52 PD3.Data
51 PD3.Control
50 PD3.Pullup_Enable
49 PD4.Data
48 PD4.Control
47 PD4.Pullup_Enable

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 240

ATmega32A

Table 25-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module
46 PD5.Data Port D
45 PD5.Control

44 PD5.Pullup_Enable

43 PD6.Data

42 PD6.Control

41 PD6.Pullup_Enable

40 PD7.Data

39 PD7.Control

38 PD7.Pullup_Enable

37 PCO0.Data Port C
36 PCO0.Control

35 PCO.Pullup_Enable

34 PC1.Data

33 PC1.Control

32 PC1.Pullup_Enable

31 PC6.Data

30 PC6.Control

29 PC6.Pullup_Enable

28 PC7.Data

27 PC7.Control

26 PC7.Pullup_Enable

25 TOSC 32kHz Timer Oscillator
24 TOSCON

23 PA7.Data Port A
22 PAT7.Control

21 PA7.Pullup_Enable

20 PA6.Data

19 PA6.Control

18 PA6.Pullup_Enable

17 PA5.Data

16 PA5.Control

15 PA5.Pullup_Enable

14 PA4.Data

13 PA4.Control

12 PA4.Pullup_Enable

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 241

25.7

25.8

25.8.1

ATmega32A

Table 25-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module

1 PA3.Data Port A

PA3.Control

-
o

PA3.Pullup_Enable

PA2.Data

PA2.Control

PA2.Pullup_Enable

PA1.Data

PA1.Control

PA1.Pullup_Enable

N W | OO | N || ©

PAO.Data

N

PAOQ.Control

0 PAOQ.Pullup_Enable

Notes: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
2. PRIVATE_SIGNAL2 should always be scanned in as zero.

Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in a standard format
used by automated test-generation software. The order and function of bits in the Boundary-scan Data Register
are included in this description. A BSDL file for ATmega32A is available.

Register Description

MCU Control and Status Register —- MCUCSR
The MCU Control and Status Register contains control bits for general MCU functions, and provides information on
which reset source caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0
| s [sc2 | = | JTRF WDRF BORF EXTRF PORF | MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

* Bit 7 — JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this bit is one, the JTAG
interface is disabled. In order to avoid unintentional disabling or enabling of the JTAG interface, a timed sequence
must be followed when changing this bit: The application software must write this bit to the desired value twice
within four cycles to change its value.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to one. The reason for
this is to avoid static current at the TDO pin in the JTAG interface.

e Bit4 - JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG instruction
AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 242

ATmega32A

26. Boot Loader Support — Read-While-Write Self-Programming

26.1

26.2

26.3

26.3.1

26.3.2

26.4

Features

* Read-While-Write Self-Programming

* Flexible Boot Memory size

» High Security (Separate Boot Lock Bits for a Flexible Protection)
» Separate Fuse to Select Reset Vector

* Optimized Page(” Size

* Code Efficient Algorithm

 Efficient Read-Modify-Write Support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 27-5 on page 259) used during program-
ming. The page organization does not affect normal operation.

Overview

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for downloading and
uploading program code by the MCU itself. This feature allows flexible application software updates controlled by
the MCU using a Flash-resident Boot Loader program. The Boot Loader program can use any available data inter-
face and associated protocol to read code and write (program) that code into the Flash memory, or read the code
from the Program memory. The program code within the Boot Loader section has the capability to write into the
entire Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it can also erase
itself from the code if the feature is not needed anymore. The size of the Boot Loader memory is configurable with
Fuses and the Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives the
user a unique flexibility to select different levels of protection.

Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot Loader section (see Fig-
ure 26-2). The size of the different sections is configured by the BOOTSZ Fuses as shown in Table 26-6 on page
253 and Figure 26-2. These two sections can have different level of protection since they have different sets of
Lock bits.

Application Section
The Application section is the section of the Flash that is used for storing the application code. The protection level
for the application section can be selected by the Application Boot Lock bits (Boot Lock bits 0), see Table 26-2 on
page 247. The Application section can never store any Boot Loader code since the SPM instruction is disabled
when executed from the Application section.

BLS - Boot Loader Section
While the Application section is used for storing the application code, the The Boot Loader software must be
located in the BLS since the SPM instruction can initiate a programming when executing from the BLS only. The
SPM instruction can access the entire Flash, including the BLS itself. The protection level for the Boot Loader sec-
tion can be selected by the Boot Loader Lock bits (Boot Lock bits 1), see Table 26-3 on page 247.

Read-While-Write and no Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader software update is
dependent on which address that is being programmed. In addition to the two sections that are configurable by the
BOOTSZ Fuses as described above, the Flash is also divided into two fixed sections, the Read-While-Write
(RWW) section and the No Read-While-Write (NRWW) section. The limit between the RWW- and NRWW sections
is given in Table 26-7 on page 253 and Figure 26-2 on page 246. The main difference between the two sections is:

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 243

26.4.1

26.4.2

ATmega32A

* When erasing or writing a page located inside the RWW section, the NRWW section can be read during the
operation.

* When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire
operation.

Note that the user software can never read any code that is located inside the RWW section during a Boot Loader
software operation. The syntax “Read-While-Write section” refers to which section that is being programmed
(erased or written), not which section that actually is being read during a Boot Loader software update.

RWW - Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible to read code from
the Flash, but only code that is located in the NRWW section. During an on-going programming, the software must
ensure that the RWW section never is being read. If the user software is trying to read code that is located inside
the RWW section (that is, by a call/jmp/lpm or an interrupt) during programming, the software might end up in an
unknown state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader section. The
Boot Loader section is always located in the NRWW section. The RWW Section Busy bit (RWWSB) in the Store
Program Memory Control Register (SPMCR) will be read as logical one as long as the RWW section is blocked for
reading. After a programming is completed, the RWWSB must be cleared by software before reading code located
in the RWW section. See “SPMCR - Store Program Memory Control Register” on page 254. for details on how to
clear RWWSB.

NRWW - No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating a page in the
RWW section. When the Boot Loader code updates the NRWW section, the CPU is halted during the entire page
erase or page write operation.

Table 26-1. Read-While-Write Features

Which Section does the Z- Which Section can be Read-While-
pointer Address during the Read during Is the CPU Write
Programming? Programming? Halted? Supported?
RWW section NRWW section No Yes
NRWW section None Yes No

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 244

ATmega32A

Figure 26-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

— - - - - — — = Z-pointer

Addresses NRWW

Z-pointer Section

Addresses RWW No Read-While-Write

Section (NRWW) Section
CPU is Halted

f during the Operation
Code Located in
NRWW Section

Can be Read during
the Operation

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 245

26.5

ATmega32A

Figure 26-2. Memory Sections'"

Program Memory Program Memory
BOOTSZ ='11' BOOTSZ ='10'
B $0000 [$0000

c c

o o

3 3

(7] (7]

% Application Flash Section .% Application Flash Section

= =

2 2

< <

5 z

el e

3 3

[i

,5 N End RWW s - - _ _ _ _ _ End RWW

g Start NRWW s Start NRWW

(7] (7]

,% Application Flash Section _% Application Flash Section

= =

2 L} End Application

< . . =

= End Application = P — Start Boot Loader

: : oot Loader Flash Section

g Boot Loader Flash Section Start Boot Loader g

o L— Flashend g - Flashend

o o

z z

Program Memory Program Memory
BOOTSZ ='01" BOOTSZ ='00'
— $0000 — $0000

c =

S 8

© °©

D O

(7] (7]

% Application Flash Section -% Application flash Section

= =

< 2

<= <

2 3

el e

@]

ko (5]

[o

< / o : / End RWW, End Application

s T T T T 7 Start NRWW s - - - - - = =] Start NRWW, Start Boot Loader
Q

ﬁ Application Flash Section @

§ End Application é .

% Start Boot Loader % Boot Loader Flash Section

= Boot Loader Flash Section =

] ©

@ @

[Q

oc L— Flashend o L— Flashend

o o

=z z

Note: 1. The parameters in the figure above are given in Table 26-6 on page 253.

Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The Boot Loader has two
separate sets of Boot Lock bits which can be set independently. This gives the user a unique flexibility to select dif-
ferent levels of protection.

The user can select:

* To protect the entire Flash from a software update by the MCU

« To protect only the Boot Loader Flash section from a software update by the MCU
« To protect only the Application Flash section from a software update by the MCU
« Allow software update in the entire Flash

See Table 26-2 and Table 26-3 for further details. The Boot Lock bits can be set in software and in Serial or Paral-
lel Programming mode, but they can be cleared by a Chip Erase command only. The general Write Lock (Lock Bit
mode 2) does not control the programming of the Flash memory by SPM instruction. Similarly, the general
Read/Write Lock (Lock Bit mode 3) does not control reading nor writing by LPM/SPM, if it is attempted.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 246

ATmega32A

Table 26-2. Boot Lock Bit0 Protection Modes (Application Section)("
BLBO0 Mode BLBO02 BLBO01 Protection

No restrictions for SPM or LPM accessing the Application

1 1 1 .
section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read

3 0 0 from the Application section. If interrupt vectors are placed in the
Boot Loader section, interrupts are disabled while executing
from the Application section.

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If interrupt vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)"
BLB1 mode BLB12 BLB11 | Protection

No restrictions for SPM or LPM accessing the Boot Loader

1 1 1 .
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read

3 0 0 from the Boot Loader section. If interrupt vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If interrupt vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

26.6 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may be initiated by a trig-
ger such as a command received via USART, or SPI interface. Alternatively, the Boot Reset Fuse can be
programmed so that the Reset Vector is pointing to the Boot Flash start address after a reset. In this case, the Boot
Loader is started after a reset. After the application code is loaded, the program can start executing the application
code. Note that the fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be changed through
the serial or parallel programming interface.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 247

26.7

ATmega32A

Table 26-4.
BOOTRST

Boot Reset Fuse("

Reset Address

1 Reset Vector = Application reset (address $0000)

0 Reset Vector = Boot Loader reset (see Table 26-6 on page 253)
Note: 1.

“1” means unprogrammed, “0” means programmed

Addressing the Flash during Self-Programming

The Z-pointer is used to address the SPM commands.

Bit

15

14

13

12

11

10

9

8

ZH (R31)

Z15

Z14

Z13

Z12

1

Z10

Z9

Z8

ZL (R30)

z7

Z6

z5

Z4

Z3

z2

Z1

Z0

7

6

5

4

3

2

1

0

Notes: 1.

Since the Flash is organized in pages (see Table 27-5 on page 259), the Program Counter can be treated as hav-
ing two different sections. One section, consisting of the least significant bits, is addressing the words within a
page, while the most significant bits are addressing the pages. This is shown in Figure 26-3. Note that the Page
Erase and Page Write operations are addressed independently. Therefore it is of major importance that the Boot
Loader software addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits. The content of the Z-
pointer is ignored and will have no effect on the operation. The LPM instruction does also use the Z pointer to store
the address. Since this instruction addresses the Flash byte by byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-3. Addressing the Flash during SPM("2)
BIT 15 ZPCMSB ZPAGEMSB 10
Z - REGISTER I 0

PCMSB PAGEMSB

PCWORD

PROGRAM
COUNTER

PCPAGE

PAGE ADDRESS
WITHIN THE FLASH

WORD ADDRESS
WITHIN A PAGE

PROGRAM MEMORY PAGE

PCWORD[PAGEMSB:Q]:

PAGE

INSTRUCTION WORD 00

01

02

|
I
I
1
I
1
\ 1
I
1
1
|
I
I
|

PAGEEND

The different variables used in Figure 26-3 are listed in Table 26-8 on page 254.
2. PCPAGE and PCWORD are listed in “Page Size” on page 259.

© 2018 Microchip Technology Inc.

Data Sheet Complete DS40002072A-page 248

ATmega32A

26.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM
and the buffer can be filled either before the page erase command or between a page erase and a page write
operation:

Alternative 1, fill the buffer before a Page Erase

* Fill temporary page buffer
* Perform a Page Erase
» Perform a Page Write
Alternative 2, fill the buffer after Page Erase

* Perform a Page Erase

* Fill temporary page buffer

» Perform a Page Write
If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary
page buffer) before the erase, and then be rewritten. When using alternative 1, the Boot Loader provides an effec-
tive Read-Modify-Write feature which allows the user software to first read the page, do the necessary changes,
and then write back the modified data. If alternative 2 is used, it is not possible to read the old data while loading
since the page is already erased. The temporary page buffer can be accessed in a random sequence. It is essen-
tial that the page address used in both the page erase and page write operation is addressing the same page. See
“Simple Assembly Code Example for a Boot Loader” on page 252 for an assembly code example.

26.8.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and execute SPM within
four clock cycles after writing SPMCR. The data in R1 and RO is ignored. The page address must be written to
PCPAGE in the Z-register. Other bits in the Z-pointer must be written zero during this operation.

» Page Erase to the RWW section: The NRWW section can be read during the page erase.
» Page Erase to the NRWW section: The CPU is halted during the operation.

Note: If an interrupt occurs in the timed sequence, the four cycle access cannot be ensured. In order to ensure atomic oper-
ation disable interrupts before writing to SPMCSR.

26.8.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCR
and execute SPM within four clock cycles after writing SPMCR. The content of PCWORD in the Z-register is used
to address the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by
writing the RWWSRE bit in SPMCR. It is also erased after a system reset. Note that it is not possible to write more
than one time to each address without erasing the temporary buffer.

Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be lost.

26.8.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and execute SPM within
four clock cycles after writing SPMCR. The data in R1 and RO is ignored. The page address must be written to
PCPAGE. Other bits in the Z-pointer must be written to zero during this operation.

» Page Write to the RWW section: The NRWW section can be read during the Page Write.
» Page Write to the NRWW section: The CPU is halted during the operation.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 249

26.8.4

26.8.5

26.8.6

26.8.7

26.8.8

26.8.9

ATmega32A

Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit in
SPMCR is cleared. This means that the interrupt can be used instead of polling the SPMCR Register in software.
When using the SPM interrupt, the Interrupt Vectors should be moved to the BLS section to avoid that an interrupt
is accessing the RWW section when it is blocked for reading. How to move the interrupts is described in “Inter-
rupts” on page 51.

Consideration while Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving Boot Lock bit11
unprogrammed. An accidental write to the Boot Loader itself can corrupt the entire Boot Loader, and further soft-
ware updates might be impossible. If it is not necessary to change the Boot Loader software itself, it is
recommended to program the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.

Prevent Reading the RWW Section during Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always blocked for reading. The
user software itself must prevent that this section is addressed during the Self-Programming operation. The
RWWSB in the SPMCR will be set as long as the RWW section is busy. During self-programming the Interrupt
Vector table should be moved to the BLS as described “Interrupts” on page 51, or the interrupts must be disabled.
Before addressing the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on page 252 for an
example.

Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits, write the desired data to RO, write “X0001001” to SPMCR and execute SPM
within four clock cycles after writing SPMCR. The only accessible Lock bits are the Boot Lock bits that may prevent
the Application and Boot Loader section from any software update by the MCU.

Bit 7 6 5 4 3 2 1 0
RO | 1 | 1 | BLB12 | BLB11 | BLB02 | BLBO1 | 1 | 1 |

See Table 26-2 and Table 26-3 for how the different settings of the Boot Loader bits affect the Flash access.

If bits 5:2 in RO are cleared (zero), the corresponding Boot Lock bit will be programmed if an SPM instruction is
executed within four cycles after BLBSET and SPMEN are set in SPMCR. The Z-pointer is don’t care during this
operation, but for future compatibility it is recommended to load the Z-pointer with $0001 (same as used for reading
the Lock bits). For future compatibility It is also recommended to set bits 7, 6, 1, and 0 in RO to “1” when writing the
Lock bits. When programming the Lock bits the entire Flash can be read during the operation.

EEPROM Write Prevents Writing to SPMCR
Note that an EEPROM write operation will block all software programming to Flash. Reading the Fuses and Lock
bits from software will also be prevented during the EEPROM write operation. It is recommended that the user
checks the status bit (EEWE) in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register.

Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the Z-pointer with
$0001 and set the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within three CPU
cycles after the BLBSET and SPMEN bits are set in SPMCR, the value of the Lock bits will be loaded in the desti-
nation register. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock bits or if no LPM
instruction is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles. When

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 250

26.8.10

26.8.11

ATmega32A

BLBSET and SPMEN are cleared, LPM will work as described in the AVR Instruction Set Manual on
www.microchip.com.

Bit 7 6 5 4 3 2 1 0
Rd | - | - | BLB12 | BLB11 | BLB02 | BLBO1 | LB2 | LB1 |

The algorithm for reading the Fuse Low bits is similar to the one described above for reading the Lock bits. To read
the Fuse Low bits, load the Z-pointer with $0000 and set the BLBSET and SPMEN bits in SPMCR. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of
the Fuse Low bits (FLB) will be loaded in the destination register as shown below. Refer to Table 27-4 on page 258
for a detailed description and mapping of the Fuse Low bits.

Bit 7 6 5 4 3 2 1 0
Rd | FB7 | FLB6 | FLB5 | FLB4 | FLB3 | FLB2 | FLB1 | FLBo |

Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the Fuse High bits (FHB)
will be loaded in the destination register as shown below. Refer to Table 27-3 on page 257 for detailed description
and mapping of the Fuse High bits.

Bit 7 6 5 4 3 2 1 0
Rd | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are unprogrammed, will be
read as one.

Preventing Flash Corruption
During periods of low V¢ the Flash program can be corrupted because the supply voltage is too low for the CPU
and the Flash to operate properly. These issues are the same as for board level systems using the Flash, and the
same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the Flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock bits to prevent
any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done
by enabling the internal Brown-out Detector (BOD) if the operating voltage matches the detection level. If
not, an external low V¢ Reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down Sleep mode during periods of low V. This will prevent the CPU from
attempting to decode and execute instructions, effectively protecting the SPMCR Register and thus the
Flash from unintentional writes.

Programming Time for Flash when using SPM
The Calibrated RC Oscillator is used to time Flash accesses. Table 26-5 shows the typical programming time for
Flash accesses from the CPU.

Table 26-5. SPM Programming Time.

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write,

and write Lock bits by SPM) 3.7ms 4.5ms

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 251

ATmega32A

26.8.12 Simple Assembly Code Example for a Boot Loader

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z pointer
;-error handling is not included
;-the routine must be placed inside the boot space
; (at least the Do _spm sub routine). Only code inside NRWW section can
; be read during self-programming (page erase and page write).
;-registers used: r0, rl, templ (rl6), temp2 (rl7), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ; PAGESIZEB is page size in BYTES, not

; words

.0org SMALLBOOTSTART

Write_ page:
; page erase
1di spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do spm

; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcrval, (1<<SPMEN)

call Do spm

adiw ZH:ZL, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute page write

subi ZL, low (PAGESIZEBR) ;restore pointer
sbci ZH, high (PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmcrval, (1<<PGWRT) | (L1<<SPMEN)

call Do_spm

; re-enable the RWW section

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do spm

; read back and check, optional

1di looplo, low(PAGESIZEB) ;init loop variable
1di 1loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEBR) ;restore pointer
sbci YH, high (PAGESIZEB)
Rdloop:

lpm r0, Z+
1d rl, Y+
cpse r0, ril
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 252

ATmega32A

; return to RWW section

; verify that RWW section is safe to read

Return:
in templ, SPMCR
sbrs templ, RWWSB

ret

7

7

; re-enable the RWW section

1di spmcrval,
call Do_spm
rjmp Return

Do_spm:

; check for previous SPM complete
Wait spm:

in templ, SPMCR

sbrc templ, SPMEN

rjmp Wait spm

; input:

in temp2, SREG

cli

(1<<RWWSRE) |

If RWWSB is set,
ready yet

(1<<SPMEN)

spmcrval determines SPM action

; disable interrupts if enabled, store status

; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait ee
; SPM timed sequence

; restore SREG (to enable interrupts if originally enabled)

out SPMCR, spmcrval
spm

out SREG, temp2

ret

26.8.13 Boot Loader Parameters

the RWW section is not

In Table 26-6 through Table 26-8, the parameters used in the description of the self programming are given.

Table 26-6. Boot Size Configuration")
Application Boot Loader End Boot Reset Address
Flash Flash Application (start Boot Loader
BOOTSZ1 BOOTSZ0 Boot Size | Pages Section Section section Section)
1 1 256 words | 4 $0000 - $3EFF $3F00 - $3FFF $3EFF $3F00
1 0 512 words | 8 $0000 - $3DFF $3E00 - $3FFF $3DFF $3E00
1024
0 1 words 16 $0000 - $3BFF $3C00 - $3FFF $3BFF $3C00
2048
0 0 32 $0000 - $37FF $3800 - $3FFF $37FF $3800
words
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 26-2
Table 26-7. Read-While-Write Limit"
Section Pages Address
Read-While-Write section (RWW) 224 $0000 - $37FF
No Read-While-Write section (NRWW) 32 $3800 - $3FFF
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 253

26.9

26.9.1

ATmega32A

Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on page 244 and “RWW — Read-
While-Write Section” on page 244

Table 26-8. Explanation of Different Variables used in Figure 26-3 and the Mapping to the Z-pointer

Corresponding
Variable Z-value(" Description

13 Most significant bit in the Program Counter. (The

PCMSB Program Counter is 14 bits PC[13:0])

5 Most significant bit which is used to address the
PAGEMSB words within one page (64 words in a page requires
6 bits PC [5:0]).

214 Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

Z6 Bit in Z-register that is mapped to PAGEMSB.
ZPAGEMSB Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1.

ZPCMSB

PC[13:6] 214:27 Program Counter page address: Page select, for

PCPAGE .
page erase and page write

PCI[5:0] 76:21 Program Counter word address: Word select, for
PCWORD filling temporary buffer (must be zero during page
write operation)

Note: 1. Z15: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash during Self-Programming” on page 248 for details about the use of Z-pointer during
Self-Programming.

Register Description

SPMCR - Store Program Memory Control Register
The Store Program Memory Control Register contains the control bits needed to control the Boot Loader
operations.

Bit 7 6 5 4 3 2 1 0

| SPMIE RWWSB - RWWSRE | BLBSET | PGWRT PGERS SPMEN | SPMCR
Read/Write R/W R R R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

¢ Bit 7 — SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM ready interrupt will
be enabled. The SPM ready Interrupt will be executed as long as the SPMEN bit in the SPMCR Register is cleared.

¢ Bit 6 - RWWSB: Read-While-Write Section Busy

When a self-programming (Page Erase or Page Write) operation to the RWW section is initiated, the RWWSB will
be set (one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit
will be cleared if the RWWSRE bit is written to one after a Self-Programming operation is completed. Alternatively
the RWWSB bit will automatically be cleared if a page load operation is initiated.

* Bit 5—- Reserved Bit
This bit is a reserved bit in the ATmega32A and always read as zero.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 254

ATmega32A

¢ Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is blocked for reading (the
RWWSB will be set by hardware). To re-enable the RWW section, the user software must wait until the program-
ming is completed (SPMEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as
SPMEN, the next SPM instruction within four clock cycles re-enables the RWW section. The RWW section cannot
be re-enabled while the Flash is busy with a page erase or a page write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will be lost.

¢ Bit 3 - BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles sets Boot
Lock bits, according to the data in RO. The data in R1 and the address in the Z-pointer are ignored. The BLBSET
bit will automatically be cleared upon completion of the Lock bit set, or if no SPM instruction is executed within four
clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR Register, will read either
the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the destination register. See “Reading the
Fuse and Lock Bits from Software” on page 250 for details.

¢ Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes
Page Write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-
pointer. The data in R1 and RO are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if
no SPM instruction is executed within four clock cycles. The CPU is halted during the entire page write operation if
the NRWW section is addressed.

¢ Bit 1 — PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes
Page Erase. The page address is taken from the high part of the Z-pointer. The data in R1 and RO are ignored. The
PGERS bit will auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock
cycles. The CPU is halted during the entire page write operation if the NRWW section is addressed.

¢ Bit 0 — SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE,
BLBSET, PGWRT or PGERS, the following SPM instruction will have a special meaning, see description above. If
only SPMEN is written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of
an SPM instruction, or if no SPM instruction is executed within four clock cycles. During page erase and page
write, the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no
effect.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 255

ATmega32A

27. Memory Programming

27.1 Program And Data Memory Lock Bits

The ATmega32A provides six Lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to
obtain the additional features listed in Table 27-2. The Lock bits can only be erased to “1” with the Chip Erase
command.

Table 27-1. Lock Bit Byte("

Lock Bit Byte Bit No. Description Default Value

7 - 1 (unprogrammed)

6 - 1 (unprogrammed)
BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLBO1 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed

Table 27-2. Lock Bit Protection Modes

Memory Lock Bits® Protection Type
LB Mode LB2 LB1
1 1 1 No memory lock features enabled.
Further programming of the Flash and EEPROM is disabled in
2 1 0 Parallel and SPI/JTAG Serial Programming mode. The Fuse bits

are locked in both Serial and Parallel Programming mode.")

Further programming and verification of the Flash and EEPROM
is disabled in Parallel and SPI/JTAG Serial Programming mode.
The Fuse bits are locked in both Serial and Parallel
Programming mode.(")

BLBO Mode BLB02 | BLBO1

No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
3 0 0 from the Application section. If interrupt vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If interrupt vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

BLB1 Mode BLB12 | BLB11

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 256

27.2

ATmega32A

Table 27-2. Lock Bit Protection Modes (Continued)
Memory Lock Bits(®) Protection Type
1 1 No restrictions for SPM or LPM accessing the Boot Loader
section.
2 1 SPM is not allowed to write to the Boot Loader section.
SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
3 0 from the Boot Loader section. If interrupt vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.
LPM executing from the Application section is not allowed to
4 0 1 read from the Boot Loader section. If interrupt vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.
Notes: 1. Program the fuse bits before programming the Lock bits.
2. “1” means unprogrammed, “0” means programmed
Fuse Bits

The ATmega32A has two fuse bytes. Table 27-3 and Table 27-4 describe briefly the functionality of all the fuses
and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, “0”, if they are

programmed.
Table 27-3. Fuse High Byte
Fuse High
Byte Bit No. | Description Default Value
OCDEN® 7 Enable OCD 1 (unprogrammed, OCD disabled)
JTAGEN® 6 Enable JTAG 0 (programmed, JTAG enabled)
™) Enable SPI Serial Program and
SPIEN 5 Data Downloading 0 (programmed, SPI prog. enabled)
CKOPT®@ 4 Oscillator options 1 (unprogrammed)
EEPROM memory is preserved 1 (unprogrammed, EEPROM not
EESAVE 3 .
through the Chip Erase preserved)
Select Boot Size (see Table 26-6
BOOTSZ1 2 for details) 0 (programmed)(3)
Select Boot Size (see Table 26-6
BOOTSZ0 L for details) 0 (programmed)(?’)
BOOTRST 0 Select reset vector 1 (unprogrammed)
Notes: 1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits. See “Clock Sources” on page 32. for
details.
3. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 26-6 on page 253.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits and the JTAGEN
Fuse. A programmed OCDEN Fuse enables some parts of the clock system to be running in all sleep modes. This
may increase the power consumption.
5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This to avoid static cur-

rent at the TDO pin in the JTAG interface.

© 2018 Microchip Technology Inc.

Data Sheet Complete DS40002072A-page 257

27.21

27.3

27.4

ATmega32A

Table 27-4. Fuse Low Byte

Fuse Low

Byte Bit No. | Description Default Value

BODLEVEL 7 Brown-out Detector trigger level 1 (unprogrammed)

BODEN 6 Brown-out Detector enable 1 (unprogrammed, BOD disabled)
SUT1 5 Select start-up time 1 (unprogrammed)“)

SUTO 4 Select start-up time 0 (programmed)(”

CKSEL3 3 Select Clock source 0 (programmed)(z)

CKSEL2 2 Select Clock source 0 (programmed)(z)

CKSEL1 1 Select Clock source 0 (programmed)(z)

CKSELO 0 Select Clock source 1 (unprogrammed)(z)

Notes: 1. The default value of SUT1:0 results in maximum start-up time. See Table 9-9 on page 36 for details.
2. The default setting of CKSEL3:0 results in internal RC Oscillator @ 1MHz. See Table 9-1 on page 32 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if Lock bit1 (LB1) is
programmed. Program the Fuse bits before programming the Lock bits.

Latching of Fuses
The Fuse values are latched when the device enters programming mode and changes of the Fuse values will have
no effect until the part leaves Programming mode. This does not apply to the EESAVE Fuse which will take effect
once it is programmed. The fuses are also latched on Power-up in Normal mode.

Signature Bytes
All AVR microcontrollers have a three-byte signature code which identifies the device. This code can be read in
both serial and parallel mode, also when the device is locked. The three bytes reside in a separate address space.

For the ATmega32A the signature bytes are:

1. $000: $1E
2. $001: $95 (indicates 32Kbytes Flash memory)
3. $002: $02 (indicates ATmega32A device when $001 is $95)

Calibration Byte

The ATmega32A stores four different calibration values for the internal RC Oscillator. These bytes resides in the
signature row High Byte of the addresses 0x0000, 0x0001, 0x0002, and 0x0003 for 1, 2, 4 , and 8Mhz respectively.
During Reset, the 1MHz value is automatically loaded into the OSCCAL Register. If other frequencies are used,
the calibration value has to be loaded manually, see “OSCCAL — Oscillator Calibration Register” on page 38 for
details.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 258

27.5

27.6

27.6.1

ATmega32A

Page Size
Table 27-5. No. of Words in a Page and no. of Pages in the Flash
Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB
16K words (32Kbytes) 64 words PCI[5:0] 256 PC[13:6] 13

Table 27-6. No. of Words in a Page and no. of Pages in the EEPROM
EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB
1024bytes 4bytes EEA[1:0] 256 EEA[9:2] 9

Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM Data memory, Mem-
ory Lock bits, and Fuse bits in the ATmega32A. Pulses are assumed to be at least 250 ns unless otherwise noted.

Signal Names
In this section, some pins of the ATmega32A are referenced by signal names describing their functionality during
parallel programming, see Figure 27-1 and Table 27-7. Pins not described in the following table are referenced by
pin names.

The XA1/XAO0 pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit coding is
shown in Table 27-9.

When pulsing WR or OE, the command loaded determines the action executed. The different Commands are
shown in Table 27-10.

Figure 27-1. Parallel Programming

+5V

RDY/BSY <—— PD1
vce
OE ——> PD2 +5V
WR ——> PD3 AVCC
BS1 —» PD4
PB7 - PBO [«——> DATA
XA0O ——»{ PD5
XA1 ——»| PD6
PAGEL ——» PD7
+12V —— | RESET

BS2 ———>» PAO

——>» XTAL1

I -

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 259

ATmega32A

Table 27-7. Pin Name Mapping

Signal Name in Pin
Programming Mode Name 110 Function
RDY/BSY PD1 0 0: Device is busy programming, 1: Device is ready for
new command
OE PD2 [Output Enable (Active low)
WR PD3 | Write Pulse (Active low)
BS1 PD4 | Byte Select 1 (“0” selects low byte, “1” selects high
byte)
XA0 PD5 | XTAL Action Bit 0
XA1 PD6 I XTAL Action Bit 1
PAGEL PD7 I Program Memory and EEPROM data Page Load
BS2 PAQ | Byte Select 2 (“0” selects low byte, “1” selects 2'nd high
byte)
DATA PB7-0 110 Bidirectional Data bus (Output when OE is low)

Table 27-8. Pin Values used to Enter Programming Mode

Pin Symbol Value
PAGEL Prog_enable[3] 0
XA1 Prog_enable[2] 0
XA0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

Table 27-9. XA1 and XA0 Coding

XA1 | XAO0 | Action when XTAL1 is Pulsed
0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1)
0 1 Load Data (High or Low data byte for Flash determined by BS1)
1 0 Load Command
1 1 No Action, Idle

Table 27-10. Command Byte Bit Coding

Command Byte Command Executed
1000 0000 Chip Erase
0100 0000 Write Fuse Bits
0010 0000 Write Lock Bits
0001 0000 Write Flash
0001 0001 Write EEPROM
0000 1000 Read Signature Bytes and Calibration byte

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 260

ATmega32A

Table 27-10. Command Byte Bit Coding (Continued)

Command Byte Command Executed
0000 0100 Read Fuse and Lock bits
0000 0010 Read Flash
0000 0011 Read EEPROM

27.7 Parallel Programming

27.71 Enter Programming Mode
The following algorithm puts the device in Parallel Programming mode:

oD~

Apply 4.5V - 5.5V between V- and GND, and wait at least 100 ps.
Set RESET to “0” and toggle XTAL1 at least 6 times
Set the Prog_enable pins listed in Table 27-8 on page 260 to “0000” and wait at least 100 ns.

Apply 11.5V - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V has been
applied to RESET, will cause the device to fail entering Programming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible to apply qualified XTAL1
pulses. In such cases, the following algorithm should be followed:

Ao bh =

5.
6.

Set Prog_enable pins listed in Table 27-8 on page 260 to “0000”.
Apply 4.5V - 5.5V between V. and GND simultaneously as 11.5V - 12.5V is applied to RESET.
Wait 100 ps.

Re-program the fuses to ensure that External Clock is selected as clock source (CKSEL3:0 = 0b0000) If
Lock bits are programmed, a Chip Erase command must be executed before changing the fuses.

Exit Programming mode by power the device down or by bringing RESET pin to 0Ob0.
Entering Programming mode with the original algorithm, as described above.

27.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the
following should be considered.

» The command needs only be loaded once when writing or reading multiple memory locations.
« Skip writing the data value $FF, that is the contents of the entire EEPROM (unless the EESAVE fuse is

programmed) and Flash after a Chip Erase.

» Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or

256 byte EEPROM. This consideration also applies to Signature bytes reading.

27.7.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM() memories plus Lock bits. The Lock bits are not reset until the
program memory has been completely erased. The Fuse bits are not changed. A Chip Erase must be performed
before the Flash and/or the EEPROM are reprogrammed.

Note:

1. The EEPRPOM memory is preserved during chip erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

ok~

Set XA1, XAO to “10”. This enables command loading.

Set BS1 to “0”.

Set DATA to “1000 0000”. This is the command for Chip Erase.

Give XTAL1 a positive pulse. This loads the command.

Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 261

27.74

ATmega32A

6. Wait until RDY/BSY goes high before loading a new command.

Programming the Flash
The Flash is organized in pages, see Table 27-5 on page 259. When programming the Flash, the program data is
latched into a page buffer. This allows one page of program data to be programmed simultaneously. The following
procedure describes how to program the entire Flash memory:

A. Load Command “Write Flash”

Set XA1, XAO to “10”. This enables command loading.

Set BS1 to “0”.

Set DATA to “0001 0000”. This is the command for Write Flash.
Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

Set XA1, XAO to “00”. This enables address loading.

Set BS1 to “0”. This selects low address.

Set DATA = Address low byte ($00 - $FF).

Give XTAL1 a positive pulse. This loads the address low byte.
C. Load Data Low Byte

1. Set XA1, XAO to “01”. This enables data loading.

2. Set DATA = Data low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte

Set BS1 to “1”. This selects high data byte.

Set XA1, XAO0 to “01”. This enables data loading.

Set DATA = Data high byte ($00 - $FF).

Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data

1. SetBS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 27-3 for signal waveforms)
F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

oD~

Ao bh =

oD~

While the lower bits in the address are mapped to words within the page, the higher bits address the pages within
the FLASH. This is illustrated in Figure 27-2 on page 263. Note that if less than 8 bits are required to address
words in the page (page size < 256), the most significant bit(s) in the address low byte are used to address the
page when performing a page write.

G. Load Address High byte

Set XA1, XAO0 to “00”. This enables address loading.

Set BS1 to “1”. This selects high address.

Set DATA = Address high byte ($00 - $FF).

Give XTAL1 a positive pulse. This loads the address high byte.
H. Program Page

1. SetBS1=40"
2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSYgoes low.
3. Wait until RDY/BSY goes high. (See Figure 27-3 for signal waveforms)

I. Repeat B through H until the entire Flash is programmed or until all data has been programmed.

Ao bh =

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 262

ATmega32A

J. End Page Programming

1. 1. Set XA1, XAO to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.
3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are reset.

Figure 27-2. Addressing the Flash which is Organized in Pages

PCMSB PAGEMSB
PROGRAM ‘
CoUNTER PCPAGE PCWORD
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:]:
PAGE B INSTRUCTION WORD 00
\ 01
\
\ 02
\ 1
< \ N !
\ 1
\ :
\ 1
\ :
\ 1
\ :
\ 1
! :
\ .
\ PAGEEND
\

Note: 1. PCPAGE and PCWORD are listed in Table 27-5 on page 259.

Figure 27-3. Programming the Flash Waveforms!"

F

/—/%

A B C D E B C D E G H
DATA :X 510 {apoR. Low) DATA Lo DATA HiGH ADDR. Low) para Low Y(ata HiaHY xx YapDR. HiGH XX
XA1 _/_\
wo] — \
BSt /—\—/—\
XTAL1 _/__/__/__/__/__/__/_\ /_\
WA \/
RDY/BSY \—/_
RESET +12v
OE
PAGEL [\ [\

BS2

Note: 1. “XX”is don’t care. The letters refer to the programming description above.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 263

ATmega32A

27.7.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 27-6 on page 259. When programming the EEPROM, the program
data is latched into a page buffer. This allows one page of data to be programmed simultaneously. The program-
ming algorithm for the EEPROM data memory is as follows (refer to “Programming the Flash” on page 262 for
details on Command, Address and Data loading):

A: Load Command “0001 0001”.

G: Load Address High Byte ($00 - $FF)

B: Load Address Low Byte ($00 - $FF)

C: Load Data ($00 - $FF)

E: Latch data (give PAGEL a positive pulse)
K: Repeat 3 through 5 until the entire buffer is filled

L: Program EEPROM page

1. SetBS1to “0".
2. Give WRa negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page. (See Figure 27-4 for signal
waveforms)

I N

Figure 27-4. Programming the EEPROM Waveforms

K
/—/H
A G B C E B C E L
oata __X__ o1 Jpoon riaH(aoor Low)(para X x Yaoor ow) oam)
wi O\
XAO [/ O\
Bt /[
XTAL1 _/__/__/__/_\—/__/_\
W \/
RDY/BSY \—/—
RESET +12v
OE
PAGEL [\ [\

BS2

27.7.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on page 262 for details
on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte ($00 - $FF)

3. B:Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
5. SetBS1 to “1”. The Flash word high byte can now be read at DATA.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 264

ATmega32A

6. SetOE to “1”.

27.7.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash” on page 262 for
details on Command and Address loading):

A: Load Command “0000 0011”.

G: Load Address High Byte ($00 - $FF)

B: Load Address Low Byte ($00 - $FF)

Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

Set OE to “1”.

o krowbd -

27.7.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash” on page 262 for
details on Command and Data loading):
1. A: Load Command “0100 0000".
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1to “0” and BS2 to “0".
4. Give WR a negative pulse and wait for RDY/BSY to go high.

27.7.9 Programming the Fuse High Bits
The algorithm for programming the Fuse high bits is as follows (refer to “Programming the Flash” on page 262 for
details on Command and Data loading):
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1to “1” and BS2 to “0”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. SetBS1 to “0”. This selects low data byte.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 265

ATmega32A

Figure 27-5. Programming the Fuses

Write Fuse Low byte Write Fuse high byte
A CcC r N A C r N
DATA x $40 X DATA X XX X $40 X DATA X XX

XA1 / \ / \
BS1 / \
s [\ [\ \
W \/ \/
RDY/BSY _/ _/_

RESET +12V

OE

PAGEL

27.710 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on page 262 for details
on Command and Data loading):

1. A:Load Command “0010 0000".

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

27.711 Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash” on page 262 for
details on Command loading):

A: Load Command “0000 0100".

2. Set OE to “0", BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be read at DATA (“0”
means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be read at DATA (“0”
means programmed).

4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at DATA (“0” means
programmed).

5. Set OE to “1”.

-_—

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 266

ATmega32A

Figure 27-6. Mapping between BS1, BS2 and the Fuse- and Lock Bits during Read

Fuse Low Byte »{ 0

DATA

Lock Bits »| 0

,—> 1

BS1

Fuse High Byte|—»| 1

BS2

27.7.12 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on page 262 for
details on Command and Address loading):
A: Load Command “0000 1000”.
B: Load Address Low Byte ($00 - $02).

1
2
3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.
4. SetOE to“1”.

27.7.13 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on page 262 for
details on Command and Address loading):

1. A: Load Command “0000 1000

2. B:Load Address Low Byte, $00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. SetOE to “1".

27.7.14 Parallel Programming Characteristics

Figure 27-7. Parallel Programming Timing, Including some General Timing Requirements

Exwe

XTALA P AN _
tovxH txLox
Data & Contol --
(DATA, XA0/1, BS1, BS2) >< >< _
tavpH teex | fBvwi
t
PAGEL ZE N e
twi wH .
— N e
WR teLwi N—
WLRL
_ >
RDY/BSY L /

twirH

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 267

ATmega32A

Figure 27-8. Parallel Programming Timing, Loading Sequence with Timing Requirements("

LOAD ADDRESS
(LOW BYTE)

/—)H

XTAL1

LOAD DATA
(LOW BYTE)

f—)H

txixH

LOAD DATA LOAD DATA
(HIGH BYTE)

/—)H/—)H

txLpH

BS1

) S

PAGEL

LOAD ADDRESS
(LOW BYTE)

f—)%

tpLxH m

DATA

X ADDRO (Low Byte)

X

DATA (Low Byte) X

DATA (High Byte)

ADDR1 (Low Byte)

X

XA0

XA1

Note: 1.

The timing requirements shown in Figure 27-7 (that is, thyxy, txpx. . @nd ty px) also apply to loading operation.

Figure 27-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing

Requirements(!

LOAD ADDRESS
(LOW BYTE)

—

oL

-
XTAL1

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

—

BS1

toLov
<~

tsvbpv
-—

tC)HDZ
-

DATA

_<

ADDRO (Low Byte)

>—j< DATA (Low Byte)

DATA (High Byte)

ADDR1 (Low Byte)

XAO

XA1

Note: 1. The timing requirements shown in Figure 27-7 (that is, thyxn, txqx. @nd ty px) also apply to reading operation.
Table 27-11. Parallel Programming Characteristics, V¢ = 5V £10%

Symbol Parameter Min Typ Max Units

Vpp Programming Enable Voltage 11.5 12.5 \Y

lpp Programming Enable Current 250 pA

tovxH Data and Control Valid before XTAL1 High 67 ns

tyLxH XTAL1 Low to XTAL1 High 200 ns

tyHxL XTAL1 Pulse Width High 150 ns

ty px Data and Control Hold after XTAL1 Low 67 ns

tyLwL XTAL1 Low to WR Low 0 ns

tyLpH XTAL1 Low to PAGEL high 0 ns

tpLxH PAGEL low to XTAL1 high 150 ns

tsvpH BS1 Valid before PAGEL High 67 ns
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 268

27.8

27.9

ATmega32A

Table 27-11. Parallel Programming Characteristics, Voc = 5V £10% (Continued)

Symbol Parameter Min Typ Max Units
toppL PAGEL Pulse Width High 150 ns
toLBx BS1 Hold after PAGEL Low 67 ns
twiex BS2/1 Hold after WR Low 67 ns
toLwL PAGEL Low to WR Low 67 ns
taviL BS1 Valid to WR Low 67 ns
tyLwWH WR Pulse Width Low 150 ns
twLRL WR Low to RDY/BSY Low 0 1 us
tyLRH WR Low to RDY/BSY High!" 3.7 45 ms
twLrRH_cE WR Low to RDY/BSY High for Chip Erase®) 7.5 9 ms
tyLoL XTAL1 Low to OE Low 0 ns
tavoy BS1 Valid to DATA valid 0 250 ns
toLpy OE Low to DATA Valid 250 ns
tonpz OE High to DATA Tri-stated 250 ns

Notes: 1. ty rpyis valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits commands.
2. tw,rH_ceis valid for the Chip Erase command.

SPI Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled
to GND. The serial interface consists of pins SCK, MOSI (input), and MISO (output). After RESET is set low, the
Programming Enable instruction needs to be executed first before program/erase operations can be executed.
NOTE, in Table 27-12 on page 269, the pin mapping for SPI programming is listed. Not all parts use the SPI pins
dedicated for the internal SPI interface.

SPI Serial Programming Pin Mapping

Table 27-12. Pin Mapping SPI Serial Programming

Symbol Pins 110 Description
MOSI PB5 | Serial Data in
MISO PB6 O Serial Data out
SCK PB7 | Serial Clock

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 269

27.91

ATmega32A

Figure 27-10. SPI Serial Programming and Verify!"
+2.7 - 5.5V

VvCC

+2.7-5.5V®@
MOSI ——»| PB5
MISO «<——— PB6

AVCC

SCK ———>» PB7

—— | XTAL1

—>»| RESET

I =

Notes: 1. If the device is clocked by the Internal Oscillator, it is no need to connect a clock source to the XTAL1 pin.

2. Ve -0.3V < AVCC < V¢ +0.3V, however, AVCC should always be within 2.7V - 5.5V
When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the
serial mode ONLY) and there is no need to first execute the Chip Erase instruction. The Chip Erase operation turns
the content of every memory location in both the Program and EEPROM arrays into $FF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods for the serial clock
(SCK) input are defined as follows:

Low: > 2 CPU clock cycles for f, < 12MHz, 3 CPU clock cycles for f, > 12MHz
High: > 2 CPU clock cycles for f,, < 12MHz, 3 CPU clock cycles for f,, > 12MHz

SPI Serial Programming Algorithm
When writing serial data to the ATmega32A, data is clocked on the rising edge of SCK.

When reading data from the ATmega32A, data is clocked on the falling edge of SCK. See Figure 27-11 for timing
details.

To program and verify the ATmega32A in the SPI Serial Programming mode, the following sequence is recom-
mended (See four byte instruction formats in Table 27-14):

1. Power-up sequence:
Apply power between Vi and GND while RESET and SCK are set to “0”. In some systems, the program-
mer can not ensure that SCK is held low during power-up. In this case, RESET must be given a positive
pulse of at least two CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20ms and enable SPI Serial Programming by sending the Programming Enable serial
instruction to pin MOSI.

3. The SPI Serial Programming instructions will not work if the communication is out of synchronization.
When in sync. the second byte ($53), will echo back when issuing the third byte of the Programming
Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted.
If the $53 did not echo back, give RESET a positive pulse and issue a new Programming Enable
command.

4. The Flash is programmed one page at a time (page size found in “Page Size” on page 259). The memory

page is loaded one byte at a time by supplying the 6 LSB of the address and data together with the Load
Program Memory Page instruction. To ensure correct loading of the page, the data low byte must be

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 270

27.9.2

2793

ATmega32A

loaded before data high byte is applied for a given address. The Program Memory Page is stored by load-
ing the Write Program Memory Page instruction with the 8 MSB of the address. If polling is not used, the
user must wait at least ty,p £ gy before issuing the next page. (See Table 27-13). Accessing the SPI
Serial Programming interface before the Flash write operation completes can result in incorrect
programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data together with
the appropriate Write instruction. An EEPROM memory location is first automatically erased before new
data is written. If polling is not used, the user must wait at least t,,5 geprom before issuing the next byte.
(See Table 27-13). In a chip erased device, no $FFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the content at the
selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn V¢ power off.

Data Polling Flash

When a page is being programmed into the Flash, reading an address location within the page being programmed
will give the value $FF. At the time the device is ready for a new page, the programmed value will read correctly.
This is used to determine when the next page can be written. Note that the entire page is written simultaneously
and any address within the page can be used for polling. Data polling of the Flash will not work for the value $FF,
so when programming this value, the user will have to wait for at least t,p g agy Defore programming the next
page. As a chip erased device contains $FF in all locations, programming of addresses that are meant to contain
$FF, can be skipped. See Table 27-13 for tyyp sy Value

Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the address location being
programmed will give the value $FF. At the time the device is ready for a new byte, the programmed value will read
correctly. This is used to determine when the next byte can be written. This will not work for the value $FF, but the
user should have the following in mind: As a chip erased device contains $FF in all locations, programming of
addresses that are meant to contain $FF, can be skipped. This does not apply if the EEPROM is re-programmed
without chip erasing the device. In this case, data polling cannot be used for the value $FF, and the user will have
to wait at least tyyp geprom before programming the next byte. See Table 27-13 for tyyp geprom Value.

Table 27-13. Minimum Wait Delay before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
two_FLasH 4.5ms
twp_EEPROM 9.0ms
twp_ERASE 9.0ms
two_Fuse 4.5ms

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 271

ATmega32A

Figure 27-11. SPI Serial Programming Waveforms

SERIAL DATA INPUT MSE LSB
(MOSI) ‘
:
SERIAL DATA OUTPUT MSB >< LSB
(MISO) T

SERIAL CLOCK INPUT ﬂ ﬂ M H H H m

SAMPLE T T T T

T

T

T

f

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 272

ATmega32A

Table 27-14. SPI Serial Programming Instruction Set

Instruction

Instruction Format

Byte 1

Byte 2

Byte 3

Byted

Operation

Programming Enable

1010

1100

0101

0011

XXXX

XXXX

XXXX

XXXX

Enable SPI Serial Programming after
RESET goes low.

Chip Erase

1010

1100

100x

XXXX

XXXX

XXXX

XXXX

XXXX

Chip Erase EEPROM and Flash.

Read Program Memory

0010

HO00

00aa

aaaa

bbbb

bbbb

0000

0000

Read H (high or low) data o from
Program memory at word address a:b.

Load Program Memory Page

0100

HOO0O

00xx

XXXX

xxbb

bbbb

iiii

iiii

Write H (high or low) data i to Program
Memory page at word address b. Data
low byte must be loaded before Data
high byte is applied within the same
address.

Write Program Memory Page

0100

1100

00aa

aaaa

bbxx

XXXX

XXXX

XXXX

Write Program Memory Page at
address a:b.

Read EEPROM Memory

1010

0000

00xx

Xxaa

bbbb

bbbb

0000

0000

Read data o from EEPROM memory
at address a:b.

Write EEPROM Memory

1100

0000

00xx

XxXaa

bbbb

bbbb

iiii

iiii

Write data i to EEPROM memory at
address a:b.

Read Lock Bits

0101

1000

0000

0000

XXXX

XXXX

XX00

0000

Read Lock bits. “0” = programmed, “1”
= unprogrammed. See Table 27-1 on
page 256 for details.

Write Lock Bits

1010

1100

111x

XXXX

XXXX

XXXX

11ii

iiii

Write Lock bits. Set bits = “0” to
program Lock bits. See Table 27-1 on
page 256 for details.

Read Signature Byte

0011

0000

00xx

XXXX

XXXX

xxbb

0000

0000

Read Signature Byte o at address b.

Write Fuse Bits

1010

1100

1010

0000

XXXX

XXXX

iiii

iiii

Set bits = “0” to program, “1” to
unprogram. See Table 27-4 on page
258 for details.

Write Fuse High Bits

1010

1100

1010

1000

XXXX

XXXX

iiii

iiii

Set bits = “0” to program, “1” to
unprogram. See Table 27-3 on page
257 for details.

Read Fuse Bits

0101

0000

0000

0000

XXXX

XXXX

0000

0000

Read Fuse bits. “0” = programmed, “1”
= unprogrammed. See Table 27-4 on
page 258 for details.

Read Fuse High Bits

0101

1000

0000

1000

XXXX

XXXX

0000

0000

Read Fuse high bits. “0” = pro-
grammed, “1” = unprogrammed. See
Table 27-3 on page 257 for details.

Read Calibration Byte

0011

1000

XXXX

XXXX

0000

00bb

0000

0000

Read Calibration Byte o0 at address b

Note: a = address high bits
b = address low bits

H = 0 — Low byte, 1 — High Byte

o = data out
i=datain
x = don’t care

27.9.4 SPI Serial Programming Characteristics
For Characteristics of SPI module, see “SPI Timing Characteristics” on page 291.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 273

ATmega32A

27.10 Programming via the JTAG Interface
Programming through the JTAG interface requires control of the four JTAG specific pins: TCK, TMS, TDI and TDO.
Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is default shipped with
the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared. Alternatively, if the JTD bit is set, the
External Reset can be forced low. Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are
available for programming. This provides a means of using the JTAG pins as normal port pins in running mode
while still allowing In-System Programming via the JTAG interface. Note that this technique can not be used when
using the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be dedicated for
this purpose.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

27.10.1 Programming Specific JTAG Instructions
The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions useful for Program-
ming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which
Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be used as an idle
state between JTAG sequences. The state machine sequence for changing the instruction word is shown in Figure
27-12.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 274

ATmega32A

Figure 27-12. State Machine Sequence for Changing the Instruction Word

1 : TeSt-LOGIC-RESEE i----s=mmrmmmrrsmmmr s
o
v '
0 C; Run-Test/Idle 1‘.. Pp{ Select-DR Scan 1 Pp{ Select-IR Scan A
A i ;
i o 0
____________) A v
" Capture-DR 1 Capture-IR
0 0
............ Yoo
----- » ShiftDR | :0 » Shift-IR D 0
1 1
R) y
il EBxittDR bt | L ExittdR 1
0 0
____________)\ SN : y
<.,
Pause-DR L3 0: Pause-IR 0
1 1
____________) A A4
Q8 Exito-DR 0 Exit2-IR
1 1
____________) AN v
Update-DR ig------+ Update-IR |«
RYTTTTTY 0 L1 0

27.10.2 AVR_RESET ($C)
The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking the device out
from the Reset Mode. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as
Data Register. Note that the Reset will be active as long as there is a logic “one” in the Reset Chain. The output
from this chain is not latched.

The active states are:

+ Shift-DR: The Reset Register is shifted by the TCK input.

27.10.3 PROG_ENABLE ($4)
The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit Programming
Enable Register is selected as Data Register. The active states are the following:
+ Shift-DR: The programming enable signature is shifted into the Data Register.

» Update-DR: The programming enable signature is compared to the correct value, and Programming mode is
entered if the signature is valid.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 275

ATmega32A

27.10.4 PROG_COMMANDS ($5)
The AVR specific public JTAG instruction for entering programming commands via the JTAG port. The 15-bit Pro-
gramming Command Register is selected as Data Register. The active states are the following:

» Capture-DR: The result of the previous command is loaded into the Data Register.

« Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous command and
shifting in the new command.

» Update-DR: The programming command is applied to the Flash inputs

* Run-Test/Idle: One clock cycle is generated, executing the applied command (not always required, see Table
27-15 below).

27.10.5 PROG_PAGELOAD ($6)
The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. The 1024 bit Vir-
tual Flash Page Load Register is selected as Data Register. This is a virtual scan chain with length equal to the
number of bits in one Flash page. Internally the Shift Register is 8-bit. Unlike most JTAG instructions, the Update-
DR state is not used to transfer data from the Shift Register. The data are automatically transferred to the Flash
page buffer byte by byte in the Shift-DR state by an internal state machine. This is the only active state:

« Shift-DR: Flash page data are shifted in from TDI by the TCK input, and automatically loaded into the Flash
page one byte at a time.

Note: The JTAG instruction PROG_PAGELOAD can only be used if the AVR device is the first device in JTAG scan chain. If
the AVR cannot be the first device in the scan chain, the byte-wise programming algorithm must be used.

27.10.6 PROG_PAGEREAD ($7)
The AVR specific public JTAG instruction to read one full Flash data page via the JTAG port. The 1032 bit Virtual
Flash Page Read Register is selected as Data Register. This is a virtual scan chain with length equal to the number
of bits in one Flash page plus 8. Internally the Shift Register is 8-bit. Unlike most JTAG instructions, the Capture-
DR state is not used to transfer data to the Shift Register. The data are automatically transferred from the Flash
page buffer byte by byte in the Shift-DR state by an internal state machine. This is the only active state:

« Shift-DR: Flash data are automatically read one byte at a time and shifted out on TDO by the TCK input. The
TDlI input is ignored.

Note: The JTAG instruction PROG_PAGEREAD can only be used if the AVR device is the first device in JTAG scan chain. If
the AVR cannot be the first device in the scan chain, the byte-wise programming algorithm must be used.

27.10.7 Data Registers
The Data Registers are selected by the JTAG Instruction Registers described in section “Programming Specific

JTAG Instructions” on page 274. The Data Registers relevant for programming operations are:
* Reset Register
* Programming Enable Register
* Programming Command Register
« Virtual Flash Page Load Register
« Virtual Flash Page Read Register

27.10.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is required to reset the
part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is reset as long as there
is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the part will
remain reset for a Reset Time-out Period (refer to “Clock Sources” on page 32) after releasing the Reset Register.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 276

ATmega32A

The output from this Data Register is not latched, so the reset will take place immediately, as shown in Figure 25-2
on page 226.

27.10.9 Programming Enable Register
The Programming Enable Register is a 16-bit register. The contents of this register is compared to the program-
ming enable signature, binary code 1010_0011_0111_0000. When the contents of the register is equal to the
programming enable signature, programming via the JTAG port is enabled. The register is reset to 0 on Power-on
Reset, and should always be reset when leaving Programming mode.

Figure 27-13. Programming Enable Register

TDI

|

$A370

—» Programming Enable

> -4 >0
lw)
[9)

.

ClockDR & PROG_ENABLE

TDO

27.10.10 Programming Command Register
The Programming Command Register is a 15-bit register. This register is used to serially shift in programming
commands, and to serially shift out the result of the previous command, if any. The JTAG Programming Instruction
Set is shown in Table 27-15. The state sequence when shifting in the programming commands is illustrated in Fig-
ure 27-15.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 277

ATmega32A

Figure 27-14. Programming Command Register

TDI

|

»wm®mOTWAHW®

>-H4>»0~W0WnMDVO O >

Flash
EEPROM
Fuses
Lock Bits

TDO

Table 27-15. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 — Low byte, 1 — High Byte, o = data out, i = data in, x = don'’t care
Instruction TDI sequence TDO sequence Notes

1a. Chip erase

0100011_10000000
0110001_10000000
0110011_10000000
0110011_10000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

1b. Poll for chip erase complete

0110011_10000000

XXXXXOX_ XXXXXXXX

2a. Enter Flash Write

0100011_00010000

XXXXXXX_XXXXXXXX

2b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

2c. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

2d. Load Data Low Byte

XXXXXXX_XXXXXXXX

2e. Load Data High Byte

XXXXXXX_XXXXXXXX

2f. Latch Data

0110111_00000000
1110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

2g. Write Flash Page

0110111_00000000
0110101_00000000
0110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

2h. Poll for Page Write complete

0110111_00000000

XXXXXOX_XXXXXXXX

3a. Enter Flash Read

0100011_00000010

XXXXXXX_XXXXXXXX

3b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 278

ATmega32A

Table 27-15. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 — Low byte, 1 — High Byte, o = data out, i = data in, x = don'’t care
Instruction TDI sequence TDO sequence Notes
3c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_ XXXXXXXX
3d. Read Data Low and High Byte 0110010_00000000 XXXXXXX_ XXXXXXKX
0110110_00000000 XXXXXXX_00000000 low byte
0110111_00000000 XXXXXXX_00000000 high byte

4a

. Enter EEPROM Write

0100011_00010001

XXXXXXX_XXXXXXXX

4b

. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

©)

4c

. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

4d

. Load Data Byte

XXXXXXX_XXXXXXXX

4e. Latch Data 0110111_00000000 XXXXXXX_ XXXXXXXX (1)
1110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_ XXXXXXKX

4f. Write EEPROM Page 0110011_00000000 XXXXXXX_ XXXXXXXX (1)

0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

4q.

Poll for Page Write complete

0110011_00000000

XXXXXOX_XXXXXXXX

5a.

Enter EEPROM Read

0100011_00000011

XXXXXXX_XXXXXXXX

5b.

Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

5c.

Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

5d.

Read Data Byte

0110011_bbbbbbbb
0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_00000000

6a.

Enter Fuse Write

0100011_01000000

XXXXXXX _XXXXXXXX

6b.

Load Data Low Byte(ﬁ)

XXXXXXX_XXXXXXXX

6c¢.

Write Fuse High byte

0110111_00000000
0110101_00000000
0110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

6d.

Poll for Fuse Write complete

0110111_00000000

XXXXXOX_ XXXXXXXX

Ge.

Load Data Low Bytem

XXXXXXX_XXXXXXXX

6f.

Write Fuse Low byte

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

69

. Poll for Fuse Write complete

0110011_00000000

XXXXXOX_ XXXXXXXX

7a

. Enter Lock Bit Write

0100011_00100000

XXXXXXX_XXXXXXXX

7b

. Load Data Byte(g)

XXXXXXX_XXXXXXXX

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 279

ATmega32A

Table 27-15. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 — Low byte, 1 — High Byte, o = data out, i = data in, x = don'’t care
Instruction TDI sequence TDO sequence Notes

7c. Write Lock Bits

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

(1)

7d.

Poll for Lock Bit Write complete

0110011_00000000

XXXXXOX_ XXXXXXXX

8a.

Enter Fuse/Lock Bit Read

0100011_00000100

XXXXXXX_XXXXXXXX

8b.

Read Fuse High Byte(ﬁ)

0111110_00000000
0111111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8c.

Read Fuse Low Byte(7)

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8d.

Read Lock Bits(®)

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XX000000

(5)

8e.

Read Fuses and Lock Bits

0111110_00000000
0110010_00000000
0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX

XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000

(5)

fuse high byte
fuse low byte
lock bits

9a.

Enter Signature Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

9b.

Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

9c.

Read Signature Byte

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

10a. Enter Calibration Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

10b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

10c. Read Calibration Byte

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

11a. Load No Operation Command

0100011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is

normally the case).
Repeat until o0 = “1”.

Set bits to “0” to program the corresponding fuse, “1” to unprogram the fuse.

Set bits to “0” to program the corresponding lock bit, “1” to leave the lock bit unchanged.
“0” = programmed, “1” = unprogrammed.

The bit mapping for fuses high byte is listed in Table 27-3 on page 257

The bit mapping for fuses low byte is listed in Table 27-4 on page 258

The bit mapping for Lock bits byte is listed in Table 27-1 on page 256

Address bits exceeding PCMSB and EEAMSB (Table 27-5 and Table 27-6) are don’t care

© © No ok wDdD

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 280

ATmega32A

Figure 27-15. State Machine Sequence for Changing/Reading the Data Word

.........................

Run-Test/Idle

y

1,. Select-DR Scan S b Select-IR Scan --------
0 L0
Yy . A
1 Capture-DR 1 Capture-IR
0 L0
A b . AT
. . P _ <,
> Shift-DR 0 i-p Shift-IR L0
v e . S
L p Exit-DR | Lo Exitt-R R
0 L0
A . A
<4
Pause-DR 0 Pause-IR L0
1 1
A I . A
O ExteDR | | b 900 ExiteR
1 1
A, 2 . A
Update-DR |« Update-IR id------
1 0 YT

27.10.11 Virtual Flash Page Load Register

The Virtual Flash Page Load Register is a virtual scan chain with length equal to the number of bits in one Flash
page. Internally the Shift Register is 8-bit, and the data are automatically transferred to the Flash page buffer byte
by byte. Shift in all instruction words in the page, starting with the LSB of the first instruction in the page and ending
with the MSB of the last instruction in the page. This provides an efficient way to load the entire Flash page buffer

before executing Page Write.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 281

ATmega32A

Figure 27-16. Virtual Flash Page Load Register

TDI

> -4 >»0

State
Machine

STROBES

ADDRESS

TDO

27.10.12 Virtual Flash Page Read Register

Flash
EEPROM
Fuses
Lock Bits

The Virtual Flash Page Read Register is a virtual scan chain with length equal to the number of bits in one Flash
page plus 8. Internally the Shift Register is 8-bit, and the data are automatically transferred from the Flash data
page byte by byte. The first 8 cycles are used to transfer the first byte to the internal Shift Register, and the bits that
are shifted out during these 8 cycles should be ignored. Following this initialization, data are shifted out starting
with the LSB of the first instruction in the page and ending with the MSB of the last instruction in the page. This pro-
vides an efficient way to read one full Flash page to verify programming.

Figure 27-17. Virtual Flash Page Read Register

TDI

State
Machine

STROBES N

ADDRESS |

> -4 >0

TDO

27.10.13 Programming Algorithm

Flash
EEPROM
Fuses
Lock Bits

All references below of type “1a”, “1b”, and so on, refer to Table 27-15.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 282

ATmega32A

27.10.14 Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.
2. Enterinstruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Programming Enable Register.

27.10.15 Leaving Programming Mode

Enter JTAG instruction PROG_COMMANDS.

Disable all programming instructions by usning no operation instruction 11a.

Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the programming Enable Register.
Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Pobd=

27.10.16 Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
2. Start chip erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for t,y gy _cg (refer to Table 27-11
on page 268).

27.10.17 Programming the Flash
Before programming the Flash a Chip Erase must be performed. See “Performing Chip Erase” on page 283.

Enter JTAG instruction PROG_COMMANDS.
Enable Flash write using programming instruction 2a.
Load address high byte using programming instruction 2b.
Load address low byte using programming instruction 2c.
Load data using programming instructions 2d, 2e and 2f.
Repeat steps 4 and 5 for all instruction words in the page.
Write the page using programming instruction 2g.
Poll for Flash write complete using programming instruction 2h, or wait for t, gy (refer to Table 27-11 on
page 268).
9. Repeat steps 3 to 7 until all data have been programmed.
A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to Table 27-5 on page
259) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page, starting with the LSB of the first
instruction in the page and ending with the MSB of the last instruction in the page.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for t, g (refer to Table 27-11 on
page 268).

9. Repeat steps 3 to 8 until all data have been programmed.

© N ok N =

27.10.18 Reading the Flash
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load address using programming instructions 3b and 3c.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 283

ATmega32A

4.
5.

Read data using programming instruction 3d.
Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1.
2.
3.

6.
7.

Enter JTAG instruction PROG_COMMANDS.
Enable Flash read using programming instruction 3a.

Load the page address using programming instructions 3b and 3c. PCWORD (refer to Table 27-5 on page
259) is used to address within one page and must be written as 0.

Enter JTAG instruction PROG_PAGEREAD.

Read the entire page by shifting out all instruction words in the page, starting with the LSB of the first

instruction in the page and ending with the MSB of the last instruction in the page. Remember that the first
8 bits shifted out should be ignored.

Enter JTAG instruction PROG_COMMANDS.
Repeat steps 3 to 6 until all data have been read.

27.10.19 Programming the EEPROM
Before programming the EEPROM a Chip Erase must be performed. See “Performing Chip Erase” on page 283.

® N gk~

9.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM write using programming instruction 4a.
Load address high byte using programming instruction 4b.
Load address low byte using programming instruction 4c.
Load data using programming instructions 4d and 4e.
Repeat steps 4 and 5 for all data bytes in the page.

Write the data using programming instruction 4f.

Poll for EEPROM write complete using programming instruction 4g, or wait for t,,, g (refer to Table 27-11
on page 268).

Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM

27.10.20 Reading the EEPROM

oD~

5.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM read using programming instruction 5a.
Load address using programming instructions 5b and 5c.
Read data using programming instruction 5d.

Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM

27.10.21 Programming the Fuses

1.
2.
3.

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse write using programming instruction 6a.

Load data high byte using programming instructions 6b. A bit value of “0” will program the corresponding
fuse, a “1” will unprogram the fuse.

Write Fuse High byte using programming instruction 6c¢.

Poll for Fuse write complete using programming instruction 6d, or wait for t,y, g (refer to Table 27-11 on
page 268).

Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1” will unprogram
the fuse.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 284

ATmega32A

7.

Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for t, gy (refer to Table 27-11 on

page 268).

27.10.22 Programming the Lock Bits

1.
2.
3.

4.
5.

Enter JTAG instruction PROG_COMMANDS.
Enable Lock bit write using programming instruction 7a.

Load data using programming instructions 7b. A bit value of “0” will program the corresponding Lock bit, a

“1” will leave the Lock bit unchanged.
Write Lock bits using programming instruction 7c.

Poll for Lock bit write complete using programming instruction 7d, or wait for t,,, g (refer to Table 27-11 on

page 268).

27.10.23 Reading the Fuses and Lock Bits

1.
2.
3.

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse/Lock bit read using programming instruction 8a.

To read all Fuses and Lock bits, use programming instruction 8e.

To only read Fuse high byte, use programming instruction 8b.
To only read Fuse low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

27.10.24 Reading the Signature Bytes

ok 0N~

Enter JTAG instruction PROG_COMMANDS.

Enable Signature byte read using programming instruction 9a.
Load address $00 using programming instruction 9b.

Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address $01 and address $02 to read the second and third signature bytes,

respectively.

27.10.25 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Calibration byte read using programming instruction 10a.
3. Load address $00 using programming instruction 10b.
4. Read the calibration byte using programming instruction 10c.
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 285

ATmega32A

28. Electrical Characteristics

28.1

Absolute Maximum Ratings*

Operating Temperature

Storage Temperature

Voltage on any Pin except RESET

with respect to Ground
Voltage on RESET with respect to Ground......-0.5V to +13.0V
Maximum Operating Voltage

DC Current per I/0 Pin
DC Current V¢ and GND Pins

400.0 mA TQFP/MLF

......... -565°C to +125°C

......... -65°C to +150°C

....... -0.5V to Vgc+0.5V

28.2 DC Characteristics
T =-40°C to 85°C, V¢ = 2.7 V t0 5.5 V (Unless Otherwise Noted)

*NOTICE:

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Symbol | Parameter Condition Min Typ Max Units
Input Low Voltage except | Vgc=2.7-5.5 i M
Vi XTAL1 and RESET pins | V.=4.5-5.5 0-5 0-2Vee v
Input High Voltage except | Voc=2.7-5.5 @
Vi XTAL1 and RESET pins | Vo =4.5-55 06 Veo Vee * 05 v
Input Low Voltage 1
Vv Voe=27-55 -0.5 0.1 Ve Y
IL1 XTALA pin cc cc
Input High Voltage Vee=27-55 @)
\ 0.7V Vee +0.5 \
IH1 XTAL1 pin Vec=45-55 ce ce
Input Low Voltage
VL2 RESET pin Vee=2.7-55 -0.5 0.2 Ve \Y
Input High Voltage
Vinz RESET pin Vee=27-55 0.9 Ve Vee +0.5 %
v Output Low Voltage® loL =20 MA, Ve = 5V 0.7 %
oL (Ports A,B,C,D) loL = 10 mA, Ve =3V 0.5 \Y
v Output High Voltage®) loy = -20 MA, Vg = 5V 4.2 Y
OH (Ports A,B,C,D) log =-10 MA, Ve =3V 22 \Y
| Input Leakage Ve = 5.5V, pin low 1 A
L Current I/0 Pin (absolute value) M
| Input Leakage Ve = 5.5V, pin high 1 A
I Current I/O Pin (absolute value) M
Rrst Reset Pull-up Resistor 30 60 85 kQ
Roy I/0 Pin Pull-up Resistor 20 50 kQ
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 286

ATmega32A

Tp =-40°C to 85°C, V¢ = 2.7 V t0 5.5 V (Unless Otherwise Noted)

Symbol | Parameter Condition Min Typ Max Units
Active TMHz, Vo = 3V 0.6 mA
Active 4MHz, Vo = 3V 2.1 5 mA
Active 8MHz, Vi = 5V 7.5 15 mA
Power Supply Current
Idle TMHz, Vo = 3V 0.2 mA
|
ce Idle 4MHz, Vg = 3V 0.6 2.5 mA
Idle 8MHz, Vo = 5V 2.8 8 mA
5 WDT enabled, V¢ = 3V <10 20 MA
Power-down Mode®)
WDT disabled, V¢ = 3V <1 10 MA
Analog Comparator Vee =5V
Vacio Input Offset Voltage Vi = V¢c/2 0 m
Analog Comparator Vee =5V
acLk Input Leakage Current Vi, = Vee/2 50 50 nA
t Analog Comparator Vee =27V 750 ns
ACPD Propagation Delay Vge = 4.0V 500
Notes: 1. “Max” means the highest value where the pin is ensured to be read as low
2. “Min” means the lowest value where the pin is ensured to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for port AO - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports BO - B7,C0 - C7, DO - D7 and XTALZ2, should not exceed 100 mA.
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports AO - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports BO - B4, should not exceed 100 mA.
4] The sum of all IOL, for ports B3 - B7, XTAL2, DO - D2, should not exceed 100 mA.
5] The sum of all IOL, for ports D3 - D7, should not exceed 100 mA.
6] The sum of all IOL, for ports CO - C7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not ensured to sink current greater
than the listed test condition.
4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for port AO - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports BO - B7,C0 - C7, DO - D7 and XTAL2, should not exceed 100 mA.
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports BO - B4, should not exceed 100 mA.
4] The sum of all IOH, for ports B3 - B7, XTAL2, DO - D2, should not exceed 100 mA.
5] The sum of all IOH, for ports D3 - D7, should not exceed 100 mA.
6] The sum of all IOH, for ports CO - C7, should not exceed 100 mA.If IOH exceeds the test condition, VOH may exceed the
related specification. Pins are not ensured to source current greater than the listed test condition.
5. Minimum V¢ for Power-down is 2.5V.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 287

ATmega32A

28.3 Speed Grades

Figure 28-1.

Maximum Frequency vs. V¢c.

N

16 MHz

8 MHz

Safe Operating Area

N
V 4
2.7V 4.5V 5.5V
28.4 Clock Characteristics
28.41 External Clock Drive Waveforms
Figure 28-2. External Clock Drive Waveforms
< tenex
teren —* D <+ teneL
 tolex ¥
= tCLCL
28.4.2 External Clock Drive
Table 28-1. External Clock Drive
Vee = 2.7V to 5.5V Ve = 4.5V to 5.5V
Symbol Parameter Min Max Min Max Units
MeLeL Oscillator Frequency 0 8 0 16 MHz
toLcL Clock Period 125 62.5 ns
tchex High Time 50 25 ns
tcLex Low Time 50 25 ns
teLcH Rise Time 1.6 0.5 us
tCHCL Fa” T|me 16 05 MS
Change in period from
one clock cycle to the 2 2 %
Atg oL next
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 288

ATmega32A

Table 28-2. External RC Oscillator, Typical Frequencies (V¢ = 5V)
R [kQ]" C [pF] £2)
33 22 650kHz
10 22 2.0MHz
Notes: 1. R should be in the range 3 kQ - 100 kQ, and C should be at least 20 pF. The C values given in the table includes

pin capacitance. This will vary with package type.

2. The frequency will vary with package type and board layout.

28.5 System and Reset Characteristics
Table 28-3. Reset, Brown-out and Internal Voltage Reference Characteristics
Symbol | Parameter Condition Min Typ Max Units
Power—on.R.eset Threshold 14 23 Vv
Voltage (rising)
Veor
Power-on Reset Threshold 13 23 Vv
Voltage (falling)“) ’ '
RESET Pin Threshold
VRsT Voltage 0.2 Ve 0.9 Ve \Y
Minimum pulse width on
'RsT | RESET Pin 15 Hs
v Brown-c()zL;t Reset Threshold BODLEVEL =1 2.5 2.7 29 v
Bor | Voltage BODLEVEL =0 36 | 40 4.2
Minimum low voltage period BODLEVEL =1 2 V&
t _ .
BOD for Brown-out Detection BODLEVEL = 0 2 us
Brown-out Detector
Vst hysteresis 50 mV
Ve Bandgap reference voltage 1.15 1.23 1.35 \%
Bandgap reference start-up
tgg time 40 70 us
I Bandgap .reference current 10 uA
consumption
Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vg1 (falling).
2. Vot May be below nominal minimum operating voltage for some devices. For devices where this is the case, the

device is tested down to V¢ = Vgo7 during the production test. This ensures that a Brown-out Reset will occur
before V. drops to a voltage where correct operation of the microcontroller is no longer ensured. The test is per-
formed using BODLEVEL = 1 and BODLEVEL = 0 for ATmega32A.

28.6 Two-wire Serial Interface Characteristics

Table 28-4 describes the requirements for devices connected to the Two-wire Serial Bus. The ATmega32A Two-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 289

ATmega32A

Timing symbols refer to Figure 28-3.

Table 28-4. Two-wire Serial Bus Requirements

Symbol | Parameter Condition Min Max Units
Vi Input Low-voltage -0.5 0.3 Ve \Y,
Viy Input High-voltage 0.7 Ve Ve +0.5 \Y
Vhys(” Hysteresis of Schmitt Trigger Inputs 0.05 VCC(Z) - \Y
VOL(1) Output Low-voltage 3 mA sink current 0 0.4 \Y,
t(1 Rise Time for both SDA and SCL 20 +0.1C, 3@ 300 ns
to ! Output Fall Time from V;min 10 Vi max 10 pF < C, < 400 pF® 20 +0.1C,0@ 250 ns
tsp(” Spikes Suppressed by Input Filter 0 502 ns
l; Input Current each 1/0 Pin 0.1V <V, <0.9V¢ -10 10 MA
Ci(” Capacitance for each 1/O Pin - 10 pF
fsoL SCL Clock Frequency fox®) > max(16fgc , 250kHz)® 0 400 kHz
fscL < 100kHz Vee—0.4V 1000ns
_— Q
3 mA Cy
Rp Value of Pull-up resistor
fscL > 100kHz Vee—0.4V 300ns Q
3 mA c,
thp:sTA Hold Time (repeated) START Condition fscL < 100kHz 4.0 - HS
fgcL > 100kHz 0.6 - gs
tLow Low Period of the SCL Clock fsc < 100kHz 4.7 - Hs
fsoL > 100kHz 1.3 - Us
tiich High period of the SCL clock fscL < 100kHz 4.0 - HS
fsoL > 100kHz 0.6 - ys
< —
tsusTa fsoL < 100kHz 4.7 us
Set-up time for a repeated START condition fgcL > 100kHz 0.6 - gs
00T Data hold time fsoL < 100kHz 0 3.45 Hs
fsoL > 100kHz 0 0.9 us
tsupar | Data setup time fsci < 100kHz 250 - ns
fsoL > 100kHz 100 - ns
tsu:sTo Setup time for STOP condition fsci < 100kHz 4.0 ~ HS
fgcL > 100kHz 0.6 - gs
< —
taur Bus free time between a STOP and START fsoL < 100kHz 4.7 HS
condition fsoL > 100kHz 1.3 - us
Notes: 1. In ATmega32A, this parameter is characterized and not 100% tested.
2. Required only for fg; > 100kHz.
3. C, = capacitance of one bus line in pF.
4. fox = CPU clock frequency
5. This requirement applies to all ATmega32A Two-wire Serial Interface operation. Other devices connected to the Two-wire

Serial Bus need only obey the general f5¢, requirement.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 290

ATmega32A

Figure 28-3. Two-wire Serial Bus Timing

tHiGH

— e lof —
44 tLow tlow
sc.,——— | M= e
ISUSTA e)¢ tHD;STA tHD;DAT(—) > tSU;DAT A
oA\ tsu;sTO
77777777777 I tBur
28.7 SPI Timing Characteristics
See Figure 28-4 and Figure 28-5 for details.
Table 28-5. SPI Timing Parameters
Description Mode Min Typ Max
1 SCK period Master See Table 19-4
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master 3.6
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5 « tgck ns
7 SCK to out Master 10
8 SCK to out high Master 10
9 SS low to out Slave 15
10 SCK period Slave 4 oty
1 SCK high/low Slave 2ty
12 Rise/Fall time Slave 1.6 us
13 Setup Slave 10
14 Hold Slave tex
15 SCK to out Slave 15
16 SCK to SS high Slave 20 "
17 SS high to tri-state Slave 10
18 SS low to SCK Salve 2ty
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 291

ATmega32A

Figure 28-4. SPI Interface Timing Requirements (Master Mode)

S8

SCK ¥
(CPOL = 0) /]

SCK
(CPOL = 1)

MISO
(Data Input)

LSB

T N -«
N

b

MOSI
(Data Output) 3

MSB LSB

Figure 28-5. SPI Interface Timing Requirements (Slave Mode)

MSB

18
o - > r
SS \
N
10 16
o2 le < e
SCK Y N
(CPOL =0) / 3 3 N
11 11
SCK 77—\ + b LT
(CPOL =1) X b
13 14 12| |
MOSI
ooy —H e p—() —
15 17
N
MISO LSB X
N

(Data Output)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 292

ATmega32A

28.8 ADC Characteristics

Table 28-6. ADC Characteristics, Single Ended channels, T, = -40°C to 85°C
Symbol | Parameter Condition Min Typ Max Units

Resolution Single Ended Conversion 10 Bits

Single Ended Conversion
Vrer =4V, Ve =4V 1.5 LSB
ADC clock = 200kHz

Single Ended Conversion
Vger =4V, Ve =4V 3 LSB
ADC clock = 1TMHz
Absolute Accuracy (Including INL, DNL, Single Ended Conversion
Quantization Error, Gain, and Offset Error) Vier = 4V, Ve = 4V
ADC clock = 200kHz
Noise Reduction mode

1.5 LSB

Single Ended Conversion
Vger =4V, Ve =4V
ADC clock = 1MHz
Noise Reduction mode

3 LSB

Single Ended Conversion
Integral Non-Linearity (INL) Vger =4V, Ve =4V 0.75 LSB
ADC clock = 200kHz

Single Ended Conversion
Differential Non-linearity (DNL) Vrer =4V, Vg = 4V 0.25 LSB
ADC clock = 200kHz

Single Ended Conversion
Gain Error Vger =4V, Ve = 4V 0.75 LSB
ADC clock = 200kHz

Single Ended Conversion

Offset Error Vrer =4V, Voo =4V 0.75 LSB
ADC clock = 200kHz

Clock Frequency 50 1000 kHz

Conversion Time 13 260 us
AVCC | Analog Supply Voltage Ve - 0.3 Ve +03@ | v
VREr Reference Voltage 2.0 AVCC \
Vin Input voltage GND VRer \Y

ADC conversion output 0 1023 LSB

Input bandwith 38.5 kHz
ViNT Internal Voltage Reference 2.3 2.56 2.7 \
RRer Reference Input Resistance 32 kQ
RaN Analog Input Resistance 100 MQ

Notes: 1. Minimum for AVCC is 2.7V.
2. Maximum for AVCC is 5.5V.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 293

ATmega32A

Table 28-7. ADC Characteristics, Differential channels, T, = -40°C to 85°C
Symbol | Parameter Condition Min Typ Max Units
Gain = 1x 10 Bits
Resolution Gain = 10x 10 Bits
Gain = 200x 10 Bits
Gain = 1x
Vrer =4V, Vg =5V 17 LSB
ADC clock = 50 - 200kHz
Gain = 10x
Absolute Accuracy Vrer =4V, Vg =5V 16 LSB
ADC clock = 50 - 200kHz
Gain = 200x
Vier =4V, Vg =5V 7 LSB
ADC clock = 50 - 200kHz
Gain = 1x
Vger =4V, Ve =5V 0.75 LSB
ADC clock = 50 - 200kHz
Integral Non-Linearity (INL) Gain = 10x
(Accuracy after calibration for Offset and Vrer =4V, Vg =5V 0.75 LSB
Gain Error) ADC clock =50 - 200kHz
Gain = 200x
Vger =4V, Ve =5V 2 LSB
ADC clock = 50 - 200kHz
Gain = 1x 1.6 %
Gain Error Gain = 10x 1.5 %
Gain = 200x 0.2 %
Gain = 1x
Vger =4V, Ve =5V 1 LSB
ADC clock = 50 - 200kHz
Gain = 10x
Offset Error Vrer =4V, Vg =5V 1.5 LSB
ADC clock = 50 - 200kHz
Gain = 200x
Vger =4V, Ve =5V 4.5 LSB
ADC clock = 50 - 200kHz
Clock Frequency 50 200 kHz
Conversion Time 65 260 us
AVCC Analog Supply Voltage Vee - 0.3 Ve +0.3? Y,
VRer Reference Voltage 2.0 AVCC-0.5 \
Vin Input voltage GND AVCC \
Voiee Input differential voltage -Vger/Gain Vgee/Gain, \
ADC conversion output -511 511 LSB
Input bandwith 4 kHz

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 294

ATmega32A

Table 28-7. ADC Characteristics, Differential channels, T, = -40°C to 85°C (Continued)

Symbol | Parameter Condition Min Typ Max Units
VNt Internal Voltage Reference 23 2.56 2.7 \Y
RRrer Reference Input Resistance 32 kQ
RaIN Analog Input Resistance 100 MQ

Notes: 1. Minimum for AVCC is 2.7V.
2. Maximum for AVCC is 5.5V.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 295

ATmega32A

29. Typical Characteristics

291

The following charts show typical behavior. These figures are not tested during manufacturing. All current con-
sumption measurements are performed with all /O pins configured as inputs and with internal pull-ups enabled. A
square wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of
I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating
voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C *V.*f where C, = load capac-
itance, V. = operating voltage and f = average switching frequency of 1/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not ensured to function properly at fre-
quencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down
mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Active Supply Current

Figure 29-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

1.6
14 == 55V
1.2 / 50V
1 45V
3 0.8 // 4.0V
e 3.6V
3 /////j 3.3V
06
/
0.4
1 |
0.2
O 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Frequency (MHz)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 296

ATmega32A

Figure 29-2. Active Supply Current vs. Frequency (1 - 16MHz)

16 5.5V
14 / 5.0V
12 ——— 4.5V
< 10
E L 4.0V
3 8
6 —— 1 —T sev
——13.3v
4 //
2 ///// 2.1y
0 é/
0 2 4 6 8 10 12 14 16

Frequency (MHz)

Figure 29-3. Active Supply Current vs. V. (Internal RC Oscillator, 8MHz)

12

25°C
10 / 85°C
-40 °C
8 ——
=

\

Icc (MA)
o

2.5 3 3.5 4 4.5 5 55
Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 297

ATmega32A

Figure 29-4. Active Supply Current vs. V. (Internal RC Oscillator, 4MHz)

6 -

25°C
85°C

/

-40 °C

—

\

25

35

4 45

Vee (V)

5 55

Figure 29-5. Active Supply Current vs. V. (Internal RC Oscillator, 1MHz)

1.6

25°C

_~— 85°C

1.4

= -40°C

1.2

1

0.8

Icc (mA)

0.6

0.4

0.2

0
25

3 3.5

Vee (V)

5 5.5

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 298

ATmega32A

Figure 29-6. Active Supply Current vs. V.. (External Oscillator, 32kHz)

160

140 25°C

120

100

80

lec (UA)

60

40

20

2.5 3 3.5 4 45 5 55
Vee (V)

29.2 Idle Supply Current

Figure 29-7. Idle Supply Current vs. Low Frequency (0.1 - 1.0MHz)

0.7 +
0.6
55V
0.5
/ / 50V
~ 04 |
£
8 0s — | — | 40V
' L — T — [[36V
L — —1 +——1 33V
R e e e e e e ==
——r—fF—+— 1 —T
0.1 —
0 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 299

ATmega32A

Figure 29-8. Idle Supply Current vs. Frequency (1 MHz - 16 MHz)

8,

7

5.5V

6

5.0V

Icc (mA)
o

/// 4.5V
—

- 4.0V
] 3.6V
—— |3.3V
é‘%/
0 ; i
0 2 4 6 8 10 12 14 16

Frequency (MHz)

Figure 29-9. Idle Supply Current vs. V. (Internal RC Oscillator, 8 MHz)

5,

-40 °C
/ 25 OC
4 85 °C
3
;E? /
_8 /
2
/
1
0 1
25 3 35 4 45 5 5.5
Vec (V)
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 300

ATmega32A

Figure 29-10. Idle Supply Current vs. V. (Internal RC Oscillator, 4MHz)

2.5 4 -40 °C

/ 25°C
85°C

lcc (MA)

)

0.5

2.5 3 3.5 4 4.5 5 5.5
Vec (V)

Figure 29-11. Idle Supply Current vs. V. (Internal RC Oscillator, 1MHz)

0.8

0.7
85 °C

N / 25°C
_ 40 °C

0.5

0.4

0.3 /

0.2

Icc (MA)

\

0.1

0 1
25 3 3.5 4 4.5 5 55

Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 301

ATmega32A

Figure 29-12. Idle Supply Current vs. V.. (External Oscillator, 32kHz)

40

35

30

25

20

Icc (UA)

25°C
25 3.5 4 4.5 5 5.5
Vee (V)

29.3 Power-down Supply Current

Figure 29-13. Power-down Supply Current vs. V. (Watchdog Timer Disabled)

2

1.6 85°C
-40 °C
1.2
g = 25°C
E /
0.8 /
s /
O 1
25 3 35 4 45 5 5.5
Vee (V)
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 302

ATmega32A

Figure 29-14. Power-down Supply Current vs. V. (Watchdog Timer Enabled)

20
85 °C
-~ -40 °C

10 / 25°C

_—]
8 /

Icc (UA)
o

\

Vee (V)

29.4 Power-save Supply Current
Figure 29-15. Power-save Supply Current vs. V. (Watchdog Timer Disabled)

20

25°C

/

Icc (UA)

2.5 3 3.5 4 4.5 5 5.5
Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 303

ATmega32A

29.5 Standby Supply Current

Figure 29-16. Standby Supply Current vs. V.. (WDT Disabled)

0.16
6MHz_xtal
014 6MHz_res
0.12 /
4MHz_res
0.1 4MHz_xtal
£
= 0.08 — 2MHz_res
L | — 2MHz_xtal
0.06
450kHz_res
| ////; 1MHz_res
0.04
—————
N B o —
s M
0.02
0 1
25 3 35 4 45 5 55
Vee (V)

29.6 Pin Pull-up

Figure 29-17. 1/O Pin Pull-up Resistor Current vs. Input Voltage (V¢ = 5V)

140 -

120

25°C

100

85°C

\ﬁo °C

80

lop (UA)

60

40

20

© 2018 Microchip Technology Inc.

Data Sheet Complete DS40002072A-page 304

ATmega32A

Figure 29-18. I/O Pin Pull-up Resistor Current vs. Input Voltage (V¢ = 2.7V)

70 A
-40 °C
60

25°C

85 °C
50 S

30

lop (UA

20

Figure 29-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢ = 5V)

100 -

80 \\

NN
; AN

A)

IrReseT (U

\ -40 °C
25°C
0 | 85°C

Veeset(V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 305

ATmega32A

Figure 29-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢c = 2.7V)

60 1

50

40

30 N

20 \
) \‘ 0c
\ 25°C
— 85 °C

Vreset(V)

IReseT (UA)

29.7 Pin Driver Strength

Figure 29-21. I/O Pin Source Current vs. Output Voltage (V¢ = 5V)

80

70

5°C
60 \%

85 °C

-40 °C

50

40

lon (MA)

30

20
10 \

Vo (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 306

ATmega32A

Figure 29-22. 1/0O Pin Source Current vs. Output Voltage (V¢ = 3V)

35 1

-40°C
e A
s 1 25°C
85 °C
25
< 20
£
I
515
10
5
0 1
1 1.5 2 2.5 3

Vor (V)

Figure 29-23. I/O Pin Sink Current vs. Output Voltage (V¢ = 5V)

90 1
-40 °C

80
25°C
70

85 °C

60

50

40

loL (MA)

30

20

0 0.5 1 1.5 2
VoL (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 307

ATmega32A

Figure 29-24. /O Pin Sink Current vs. Output Voltage (V¢ = 3V)

45

40

35

30

25

loL (MA)

20

15

10

5

0

29.8 Pin Thresholds and Hysteresis

-40 °C

25°C

85°C

W

0

0.5

VoL (V)

Figure 29-25. 1/0O Pin Input Threshold Voltage vs. V¢ (V|4 /O Pin Read as “17)

3

/ 85°C
25°C
25 —
/ — -40°C
2 =]
= / —
S 15 ==
8
£
[
1
0.5
0 1
25 3.5 4 4.5 5 55
Vec (V)
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 308

ATmega32A

Figure 29-26. 1/O Pin Input Threshold Voltage vs. V¢ (V,, I/0O Pin Read as “0”)

2.5 85°C
/ 25 °C
2 __— — -40°C
=15 L=
k)
o
3 = |
£ 1
0.5
0 1
25 3 35 4 45 5 5.5
Vee (V)
Figure 29-27. 1/O Pin Input Hysteresis vs. V¢
0.6
-40 °C
/ 25°C
/ 85 OC
S 04 |
\w, /
2 —
2
I
3 02
£
O 1
25 3 35 4 4.5 5 5.5
Ve (V)
© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 309

ATmega32A

Figure 29-28. Reset Input Threshold Voltage vs. V¢ (V,y, Reset Pin Read as “17)

2.5
2 —
/ﬁ'
-40 °C
S 15 ;’—;%
o~ 1
s sC——
g 85 °C
s 1
0.5
0 1
2.5 3 3.5 4 4.5 5 5.5

Vee (V)

Figure 29-29. Reset Input Threshold Voltage vs. V¢ (V,., Reset Pin Read as “0”)

251 85°C
/ 25°C
-40 °C
2 /
//
Z s /
kel
£ 1
05
O 1
25 3 35 4 45 5 55

Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 310

ATmega32A

Figure 29-30. Reset Input Pin Hysteresis vs. V¢

0.5 +

0.4
z
Z 0.3
3 -40 °C
2
2
T 02
>
Q.
£ \

25°C
0.1
85 °C
0 \\3
2.5 3 3.5 4 4.5 5 5.5
Vee (V)

29.9 BOD Thresholds and Analog Comparator Offset

Figure 29-31. BOD Thresholds vs. Temperature (BOD Level is 4.0V)

4.1 7
4 Rising|Vcc
S
ke
2
¢
=
=
3.9
Falling|Vce
3.8 1
-60 -40 -20 0 20 40 60 80 100
Temperature (°C)
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 311

ATmega32A

Figure 29-32. BOD Thresholds vs. Temperature (BOD Level is 2.7V)

2.9 4

Rising|Vcc
2.8

Threshold (V)

2.7

Falling|Vce

2.6

-60 -40 -20 0 20 40 60 80 100

Temperature (C)

Figure 29-33. Bandgap Voltage vs. V¢

1.25 -
1.248 /
1.246

1.244 A

/
1242 / /
/

1.24

25°C /
1238 = ———
1236 —

-40°C /
1.234

1.232

Bandgap Voltage (V)

2.5 3 3.5 4 4.5 5 55

Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 312

ATmega32A

29.10 Internal Oscillator Speed

Figure 29-34. Watchdog Oscillator Frequency vs. V¢

1320 1
-40 °C
25°C

1300

1280
85°C

1260

1240

1220

Frc (kHz)

1200

1180

1160

1140

1120

_—
/
3

25 3.5 4 45 5 55

Vee (V)

Figure 29-35. Calibrated 8MHz RC Oscillator Frequency vs. Temperature

8.5
8.3 M—
7.9
~ 5.5V
s 75
; — ~ [%0V
73
3.6V
71 — ~ 33V
6.9 [
~ 2.7V
6.7
65 1
-60 -40 -20 0 20 40 60 80 100
Temperature

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 313

ATmega32A

Figure 29-36. Calibrated 8MHz RC Oscillator Frequency vs. V¢

9 —
85 40°C
[—
I
. — | 25°C
— — | _—85°C
£ 75
8 A L —
7
6.5
6 1
25 3 3.5 4 45 5 55

Vee (V)

Figure 29-37. Calibrated 8MHz RC Oscillator Frequency vs. Osccal Value

-40 °C
1 / 25 °C

/,/ 85 °C
//

Fgrc (MHz)
©

0 1
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 314

ATmega32A

Figure 29-38. Calibrated 4MHz RC Oscillator Frequency vs. Temperature

4.2 A
4.1
\
N
4
\\
§es 50V
s — [~ 45V
£ 38 —— [—| iov
£ 3
T ~ 36V
T 53v
3.7
36 ~ 2.7V
35 1
-60 -40 -20 20 40 60 80 100
Temperature
Figure 29-39. Calibrated 4MHz RC Oscillator Frequency vs. V¢
4.2
4.1 -40 °C
\ — | 25°C
———
N 3.9 — | 85 °C
s
£ 38 /
3.7
36 /
35 1
25 3 3.5 4 45 5 5.5
Vee (V)
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 315

ATmega32A

Figure 29-40. Calibrated 4MHz RC Oscillator Frequency vs. Osccal Value

-40 °C
VAP

) 4

85°C

\

FHC (MHZ)
E>

\
\

0 16 32 48 64 80 96 112 128 144 16

OSCCAL (X1)

0 176

192 208 224 240 256

Figure 29-41. Calibrated 2MHz RC Oscillator Frequency vs. Temperature

2.1
2.05
\
\
2
— | —
N [~
£ 155 ——— — 2
~ 9.U'V
w .
' I ~ 3.6V
1.85 ~|
~ 2.7V
1.8 1
-60 -40 -20 0 20 40 60 80 100
Temperature
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 316

ATmega32A

Figure 29-42. Calibrated 2MHz RC Oscillator Frequency vs. V¢

2.1 7
_—40cC
) | 25°C
// o
85°C
Lﬁg /
1.8
1.7
25 3 35 4 4.5 5 55

Vec (V)

Figure 29-43. Calibrated 2MHz RC Oscillator Frequency vs. Osccal Value

4 3
-40 °C

3.5
25°C
3 / 85 °C

FRC (MHZ)
n
\

O 1
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 317

ATmega32A

Figure 29-44. Calibrated 1MHz RC Oscillator Frequency vs. Temperature

1.04
1.02 —
D
I
\
- \\\\\\\ 55V
é 0.98 I \ M~ 50V
] I T I~
i — 45V
s
— ~ 3.6V
\\\\ 3.3V
0.94
~ 2.7V
0.92 f
-60 -40 -20 0 20 40 60 80 100
Temperature

Figure 29-45. Calibrated 1MHz RC Oscillator Frequency vs. V¢

1.04
1.02 /
1 /
T
2 098
o
0.96
0.92 ‘
25 3 35 4 45 5 5

Vee (V)

-40 °C
25°C

85°C

5

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 318

ATmega32A

Figure 29-46. Calibrated 1MHz RC Oscillator Frequency vs. Osccal Value

2,

18 -40 °C
s M| 25°c
’ / 85 °C

14 A
12 /
1

=
08 — /

0,6 —

FRC (MHZ)

0,4

0,2

0 1
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

29.11 Current Consumption of Peripheral Units

Figure 29-47. Brownout Detector Current vs. V¢

20 -
18 -40 °C
25 °C
16
| 85 °C
14
12
3 10 |
38
8
6
4
2
0 1
25 3 35 4 45 5 55
Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 319

ATmega32A

Figure 29-48. ADC Current vs. V¢ (AREF = AVCC)

350 1 85 °C
25°C

300 /
-40 °C
250 //

2 200 ——

150

Icc (u

100

50

25 3 3.5 4 4.5 5 5.5
Vee (V)

Figure 29-49. AREF External Reference Current vs. V¢

200
85 °C

25°C
/ / -40 °C

150
/

Icc (UA)

100
/

50

2.5 3 3.5 4 4.5 5 5.5
Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 320

ATmega32A

Figure 29-50. Analog Comparator Current vs. V¢

100 +

90

80
85 °C

70
25°C
60 -40 °C

50
Z/

40

lcc (UA)

30

20 1
2.5 3 3.5 4 4.5 5 55

Vee (V)

Figure 29-51. Programming Current vs. V¢

8 -40 °C

25°C

85 °C

Icc (MA)

25 3 3.5 4 4.5 5 5.5
Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 321

29.12

ATmega32A

Current Consumption in Reset and Reset Pulsewidth

Figure 29-52. Reset Supply Current vs. Low Frequency
(0.1 - 1.0MHz, Excluding Current Through The Reset Pull-up)

25 55V
— | 50V

— | | 45V

£ 15
— — 1 aev
—] || /—-/; 3.3V

— | — 1 T | | —— 2.7V

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (MHz)

Figure 29-53. Reset Supply Current vs. Frequency
(1 - 16MHz, Excluding Current Through The Reset Pull-up)

167 5.5V
" / 5.0V
12 ; 4.5V
10
z 4.0V
E 8
3 / | 3.6V
6
— 1 ——33v
4 —
—— 27V
2 ///
O T 1
0 2 4 6 8 10 12 14 16

Frequency (MHz)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 322

ATmega32A

Figure 29-54. Minimum Reset Pulse Width vs. V¢

800 -

700

600

500

400
e] 85°C

300] 55°C
-40 °C

Pulsewidth (ns)

200

100

2.5 3 3.5 4 4.5 5 55 6
Vee (V)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 323

ATmega32A

30. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
$3F ($5F) SREG | T H S \ N Y4 C 16
$3E ($5E) SPH — — — — SP11 SP10 SP9 SP8 19
$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO 19
$3C ($5C) OCRO Timer/Counter0 Output Compare Register 88
$3B ($5B) GICR INT1 INTO INT2 = = — IVSEL IVCE 54,74
$3A ($5A) GIFR INTF1 INTFO INTF2 — — — — — 75
$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIEO TOIEO 88, 117, 134
$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOVO 89, 118, 135
$37 ($57) SPMCR SPMIE RWWSB — RWWSRE BLBSET PGWRT PGERS SPMEN 254
$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN — TWIE 195
$35 ($55) MCUCR SE SM2 SM1 SMO0 I1ISC11 I1ISC10 1SC01 1SC00 43,73
$34 ($54) MCUCSR JTD 1ISC2 — JTRF WDRF BORF EXTRF PORF 49, 74, 242
$33 ($53) TCCRO FOCO WGMO00 COMO1 COMO00 WGMO01 CS02 CS01 CS00 86
$32 ($52) TCNTO Timer/Counter0 (8 Bits) 88

$3100 (851 OSCCAL Oscillaltor Calibrationl Register 38

OCDR On-Chip Debug Register 42,223
$30 ($50) SFIOR ADTS2 ADTS1 ADTS0 = ACME PUD PSR2 PSR10 70, 92, 135, 199, 217
$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0O FOC1A FOC1B WGM11 WGM10 112
$2E ($4E) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 115
$2D ($4D) TCNT1H Timer/Counter1 — Counter Register High Byte 116
$2C ($4C) TCNT1L Timer/Counter1 — Counter Register Low Byte 116
$2B ($4B) OCR1AH Timer/Counter1 — Output Compare Register A High Byte 116
$2A (34A) OCR1AL Timer/Counter1 — Output Compare Register A Low Byte 116
$29 ($49) OCR1BH Timer/Counter1 — Output Compare Register B High Byte 117
$28 ($48) OCR1BL Timer/Counter1 — Output Compare Register B Low Byte 117
$27 ($47) ICR1H Timer/Counter1 — Input Capture Register High Byte 117
$26 ($46) ICR1L Timer/Counter1 — Input Capture Register Low Byte 117
$25 ($45) TCCR2 FOC2 | WGM20 | COM21 COM20 WGM21 CS22 CS21 CS20 131
$24 ($44) TCNT2 Timer/Counter2 (8 Bits) 133
$23 ($43) OCR2 Timer/Counter2 Output Compare Register 133
$22 ($42) ASSR — — — — AS2 TCN2UB OCR2UB TCR2UB 134
$21 ($41) WDTCR — = = WDTOE WDE WDP2 WDP1 WDPO 49
$20°) ($40)° UBRRH URSEL — — — UBRR[11:8] 167
UCSRC URSEL UMSEL UPM1 UPMO USBS UCSZ1 UCSZ0 UCPOL 165
$1F ($3F) EEARH — — — — — — EEAR9 EEARS 27
$1E ($3E) EEARL EEPROM Address Register Low Byte 27
$1D ($3D) EEDR EEPROM Data Register 27
$1C ($3C) EECR — — — — EERIE EEMWE EEWE EERE 27
$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO 70
$1A (33A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO 70
$19 ($39) PINA PINA7 PINA6 PINA5S PINA4 PINA3 PINA2 PINA1 PINAO 70
$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO 71
$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO 71
$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO 71
$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTCA1 PORTCO 71
$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO 71
$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 71
$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 71
$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO 71
$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO 72
$OF ($2F) SPDR SPI Data Register 142
$OE ($2E) SPSR SPIF WCOL — — — — — SPI2X 141
$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO 140
$0C ($2C) UDR USART I/O Data Register 163
$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE u2x MPCM 163
$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 164
$09 ($29) UBRRL USART Baud Rate Register Low Byte 167
$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO 199
$07 ($27) ADMUX REFS1 REFSO ADLAR MUX4 MUX3 MUX2 MUX1 MUXO0 214
$06 ($26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 215
$05 ($25) ADCH ADC Data Register High Byte 216
$04 ($24) ADCL ADC Data Register Low Byte 216
$03 ($23) TWDR Two-wire Serial Interface Data Register 197
$02 ($2_2) TWAR TWAG6 TWAS5 TWA4 TWA3 TWAE TWA1 TWAO TWGCE 197
$01 ($21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 196
§OO ‘§20l TWBR Two-wire Serial Interface Bit Rate Register 195

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 324

Notes:

ATmega32A

1.

When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debug-
ger specific documentation for details on how to use the OCDR Register.

Refer to the USART description for details on how to access UBRRH and UCSRC.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved /O memory addresses
should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the 1/0 Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 325

ATmega32A

31. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd < Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd« Rd+Rr+C Z,CN,V,H 1
ADIW Rdl K Add Immediate to Word Rdh:Rdl «- Rdh:Rdl + K ZCNV,S 2
SuUB Rd, Rr Subtract two Registers Rd <~ Rd - Rr Z,CN,V,H 1
SUBI Rd, K Subtract Constant from Register Rd « Rd-K Z,C,NVH 1
SBC Rd, Rr Subtract with Carry two Registers Rd« Rd-Rr-C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd« Rd-K-C Z,CNVH 1
SBIW RdlL,K Subtract Immediate from Word Rdh:Rdl <~ Rdh:RdI - K ZCNV,S 2
AND Rd, Rr Logical AND Registers Rd <~ Rd ¢« Rr ZN\V 1
ANDI Rd, K Logical AND Register and Constant Rd <~ Rd e K Z NV 1
OR Rd, Rr Logical OR Registers Rd < Rd v Rr ZN,V 1
ORI Rd, K Logical OR Register and Constant Rd <« RdvK ZN,V 1
EOR Rd, Rr Exclusive OR Registers Rd <« Rd ® Rr ZN,V 1
COM Rd One’s Complement Rd « $FF — Rd Z,CN\V 1
NEG Rd Two’s Complement Rd < $00 - Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd «~ Rd v K ZN\V 1
CBR Rd,K Clear Bit(s) in Register Rd < Rd e ($FF - K) ZN\V 1
INC Rd Increment Rd « Rd +1 ZN\V 1
DEC Rd Decrement Rd« Rd-1 ZN,V 1
TST Rd Test for Zero or Minus Rd < Rd « Rd ZN\V 1
CLR Rd Clear Register Rd « Rd ® Rd Z NV 1
SER Rd Set Register Rd « $FF None 1
MUL Rd, Rr Multiply Unsigned R1:R0O «~ Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 < Rd x Rr Z.C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 <~ Rd x Rr ZC 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 <~ (RdxRr)<<1 ZC 2
FMULS Rd, Rr Fractional Multiply Signed R1:RO « (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0O « (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS

RJMP k Relative Jump PC«PC+k +1 None 2
IJMP Indirect Jump to (Z) PC«Z None 2
JMP k Direct Jump PC « k None 3
RCALL k Relative Subroutine Call PC«PC+k+1 None 3
ICALL Indirect Call to (Z) PC«Z None 3
CALL k Direct Subroutine Call PC <k None 4
RET Subroutine Return PC « Stack None 4
RETI Interrupt Return PC « Stack | 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd=Rr)PC« PC+2o0r3 None 1/2/3
CP Rd,Rr Compare Rd - Rr Z,N\V,CH 1
CPC Rd,Rr Compare with Carry Rd—-Rr-C Z,N,V,CH 1
CPI Rd,K Compare Register with Immediate Rd - K Z,N\V,CH 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC <~ PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC« PC+2o0r3 None 1/21/3
SBIC P, b Skip if Bit in 1/0 Register Cleared if (P(b)=0) PC <~ PC + 2 0r 3 None 1/2/3
SBIS P,b Skip if Bit in I/O Register is Set if (P(b)=1) PC <« PC +20r 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC«-PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC«—PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z=1)then PC« PC+k+1 None 1/2
BRNE k Branch if Not Equal if (Z=0)then PC« PC+k+1 None 1/2
BRCS k Branch if Carry Set if C=1)then PC« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if (C =0)then PC« PC +k + 1 None 1/2
BRSH k Branch if Same or Higher if (C=0) then PC« PC +k + 1 None 1/2
BRLO k Branch if Lower if (C=1)thenPC« PC+k+1 None 1/2
BRMI k Branch if Minus if (N=1)then PC« PC+k+1 None 1/2
BRPL k Branch if Plus if (N =0) then PC «~ PC +k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ® V=0) then PC <« PC +k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N®V=1)thenPC« PC+k+1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H=1)then PC« PC +k +1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC« PC +k + 1 None 1/2
BRTS k Branch if T Flag Set if (T=1)then PC« PC+k +1 None 1/2
BRTC k Branch if T Flag Cleared if (T=0)then PC« PC+k+1 None 1/2
BRVS k Branch if Overflow Flag is Set if V=1)thenPC« PC+k+1 None 1/2

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 326

ATmega32A

Mnemonics Operands Description Operation Flags #Clocks
BRVC k Branch if Overflow Flag is Cleared if (V=0)then PC« PC+k +1 None 1/2
BRIE k Branch if Interrupt Enabled if (1=1)thenPC« PC+k+1 None 1/2
BRID k Branch if Interrupt Disabled if (1=0)then PC« PC+k+1 None 1/2
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd « Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd « K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X < X +1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd « (Y), Y« Y+1 None 2
LD Rd,-Y Load Indirect and Pre-Dec. Y < Y-1,Rd <« (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y +q) None 2
LD Rd, Z Load Indirect Rd « (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd « (Z), Z « Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z<«Z-1,Rd « (2) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd « (Z+q) None 2
LDS Rd, k Load Direct from SRAM Rd « (k) None 2
ST X, Rr Store Indirect (X) « Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) < Rr, X« X+1 None 2
ST -X,Rr Store Indirect and Pre-Dec. X« X-1,(X) < Rr None 2
ST Y, Rr Store Indirect (Y) < Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. Y)«<Rr,Y«Y+1 None 2
ST -Y,Rr Store Indirect and Pre-Dec. Y« Y-1,(Y)«<Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y+qg)«Rr None 2
ST Z,Rr Store Indirect (Z) < Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z)«Rr,Z«Z+1 None 2
ST -Z,Rr Store Indirect and Pre-Dec. Z<«Z-1,(Z)« Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z+q) <« Rr None 2
STS k, Rr Store Direct to SRAM (k) < Rr None 2
LPM Load Program Memory RO « (Z) None 3
LPM Rd, Z Load Program Memory Rd « (2) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd « (Z), Z « Z+1 None 3
SPM Store Program Memory (Z) « R1:RO None -
IN Rd, P In Port Rd « P None 1
ouT P, Rr Out Port P« Rr None 1
PUSH Rr Push Register on Stack Stack « Rr None 2
POP Rd Pop Register from Stack Rd « Stack None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P.,b Set Bit in 1/0 Register 1/0(P,b) «— 1 None 2
CBI P.b Clear Bit in I/0 Register 1/0(P,b) « 0 None 2
LSL Rd Logical Shift Left Rd(n+1) < Rd(n), Rd(0) «- 0 Z,CNV 1
LSR Rd Logical Shift Right Rd(n) < Rd(n+1), Rd(7) «- 0 ZCNV 1
ROL Rd Rotate Left Through Carry Rd(0)«-C,Rd(n+1)« Rd(n),C«Rd(7) ZCNV 1
ROR Rd Rotate Right Through Carry Rd(7)«C,Rd(n)« Rd(n+1),C<«-Rd(0) ZCNV 1
ASR Rd Arithmetic Shift Right Rd(n) « Rd(n+1), n=0:6 ZCNV 1
SWAP Rd Swap Nibbles Rd(3:0)«-Rd(7:4),Rd(7:4)«Rd(3:0) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) 1
BCLR s Flag Clear SREG(s) « 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry C«1 C 1
CLC Clear Carry C«0 C 1
SEN Set Negative Flag N« 1 N 1
CLN Clear Negative Flag N« 0 N 1
SEZ Set Zero Flag Z<«1 Y4 1
CLZ Clear Zero Flag Z<«0 z 1
SEI Global Interrupt Enable |« 1 | 1
CLI Global Interrupt Disable 10 | 1
SES Set Signed Test Flag S« 1 S 1
CLS Clear Signed Test Flag S« 0 S 1
SEV Set Twos Complement Overflow. V1 \ 1
CLV Clear Twos Complement Overflow V<« 0 V 1
SET Set T in SREG T« 1 T 1
CLT Clear T in SREG T« 0 T 1
SEH Set Half Carry Flag in SREG H«1 H 1
CLH Clear Half Carry Flag in SREG H« 0 H 1
© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 327

ATmega32A

Mnemonics Operands Description Operation ‘ Flags ‘ #Clocks
MCU CONTROL INSTRUCTIONS

NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-Chip Debug Only None N/A

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 328

ATmega32A

32. Ordering Information

Speed (MHz) Power Supply Ordering Code® Package(” Operational Range
ATmega32A-AU 44A
ATmega32A-AUR®) 44A .
Industrial

ATmega32A-PU 40P6 (-40°C to 85°C)
ATmega32A-MU 44M1

16 27V - 5.5V ATmega32A-MUR®) 44M1
ATmega32A-AN 44A
ATmega32A-ANR®) 44A Extended
ATmega32A-MN 44M1 (-40°C to 105°C)
ATmega32A-MNR®) 44M1

Notes: 1. This device can also be supplied in wafer form. Contact your local Microchip sales office for detailed ordering information

and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also

Halide free and fully Green.
3. Tape & Reel

Package Type
44A 44-lead, 10 x 10 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)
40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)
44M1 44-pad, 7 x 7 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

© 2018 Microchip Technology Inc. Data Sheet Complete

DS40002072A-page 329

ATmega32A

33. Packaging Information

33.1 44A
PIN 1 IDENTIFIER
S A TRRTATA |
PINT — =
e ﬁv = = B
rE EAX E1 E
I
D1
D
o7 1ot
ST i
™ ‘ A1— A2 tA
| |- L
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A - - 1.20
Al 0.05 - 0.15
A2 0.95 1.00 1.05
D 11.75 12.00 12.25
D1 9.90 10.00 10.10 | Note2
Notes: E 1175 | 1200 | 1225
1. This package conforms to JEDEC reference MS-026, Variation ACB. E1 9.90 10.00 10.10 | Note2
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
Lo . . . R B 0.300.37 0.45
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch. C 0.09 (0.17) 0.20
3. Lead coplanarity is 0.10mm maximum. L 045 0.60 075
e 0.80 TYP
06/02/2014
TITLE DRAWING NO.| REV.
44A, 44-lead, 10 x T0mm body size, 1.0mm body thickness
! - . " ! 44A C
AtmeL 0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 330

ATmega32A

33.2 40P6
- D PIN
1
[I I [*
(=«
[I O I I B I [
A W
A1
e
I E |
‘ COMMON DIMENSIONS
0° ~ 150 (Unit of Measure = mm)
\L S(E2
SYMBOL MIN NOM MAX NOTE
- eB = A - - 4.826
A1 0.381 - -
52.070 - 52.578 | Note 2
E 15.240 - 15.875
E1 13.462 - 13.970 | Note 2
B 0.356 - 0.559
B1 1.041 - 1.651
Notes: L 3.048 - 3.556
1. This package conforms to JEDEC reference MS-011, Variation AC. C 0.203 _ 0.381
2. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25mm (0.010"). eB 15.494 - 17.526
e 2.540 TYP
13/02/2014
TITLE DRAWING NO.| REV.
40P6, 40-lead (0.600"/15.24mm Wide) Plastic Dual
AtmeL Inline Package (PDIP) 40P6 C

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 331

ATmega32A

33.3 441
- D] -
— I
O_ '
Marked Pin# 11 D (
d
(
(
(E] i
(
d
d
(
(
\ p—SE ATING PLAN E
TOPVIE W E
-
W [K] -
- .
-_> 227 T~ Pin #1 Co rner SIDE VIEW
) N
\
1
JUUUUUUUUUUU _
\ CJ1 ! OptionA $‘r’i‘af]1 e COMMON DIMENSIONS
= [\ I = , 9 (Unit of Measure = mm)
— AN 3
-—) S 4 SYMBOL MIN NOM MAX NOTE
= g A 080 | 090 | 1.00
— — OptionB o Al - 0.02 0.05
Cham f
g g (C ggo)er A3 0.20 REF
v >) 0.18 0.23 030
- —
D 6.90 7.00 7.10
X
K n n n n n n n n n n n Pin #1 D2 5.00 5.20 5.40
*‘ Py E 6.90 7.00 7.10
e 0.50 BSC
L 0.59 0.64 0.69
Note: JEDEC Standard MO-220, Fig .1(S AW Singulation) VKKD-3 K 0.20 0.26 0.41
02/13/2014
TITLE GPC DRAWING NO. REV.
‘ 44M1, 44-pad, 7 x 7 x 1.0mm body, lead
Atmel pitch 0.50mm, 5.20mm exposed pad, thermally ZWS 44M1 H
enhanced plastic very thin quad flat no
lead package (VQFN)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 332

ATmega32A

34. Errata

34.1

ATmega32A, rev. J to rev. K

* First Analog Comparator conversion may be delayed

¢ Interrupts may be lost when writing the timer registers in the asynchronous timer

* IDCODE masks data from TDI input

* Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising V¢, the first Analog Comparator conversion will take longer than
expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable the Analog Comparator before the first
conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous
Timer/Counter register (TCNTXx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value OxFF nor 0x00 before writ-
ing to the asynchronous Timer Control Register (TCCRXx), asynchronous Timer Counter Register (TCNTx), or
asynchronous Output Compare Register (OCRX).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones
during Update-DR.

Problem Fix / Workaround

— If ATmega32A is the only device in the scan chain, the problem is not visible.

— Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction or by entering the
Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and
possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega32A while reading the Device ID Registers of preceding devices of the boundary scan chain.

— If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the
ATmega32A must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an
unexpected EEPROM interrupt request.

Problem Fix / Workaround
Always use OUT or SBI to set EERE in EECR.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 333

34.2

ATmega32A

ATmega32A, rev. G to rev. |

* First Analog Comparator conversion may be delayed

¢ Interrupts may be lost when writing the timer registers in the asynchronous timer

* IDCODE masks data from TDI input

* Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising V¢, the first Analog Comparator conversion will take longer than
expected on some devices.

Problem Fix/Workaround
When the device has been powered or reset, disable then enable the Analog Comparator before the first
conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous
Timer/Counter register (TCNTXx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value OxFF nor 0x00 before writ-
ing to the asynchronous Timer Control Register (TCCRXx), asynchronous Timer Counter Register (TCNTx), or
asynchronous Output Compare Register (OCRX).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones
during Update-DR.

Problem Fix / Workaround

— If ATmega32A is the only device in the scan chain, the problem is not visible.

— Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction or by entering the
Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and
possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega32A while reading the Device ID Registers of preceding devices of the boundary scan chain.

— If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the
ATmega32A must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.
Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an
unexpected EEPROM interrupt request.

Problem Fix / Workaround
Always use OUT or SBI to set EERE in EECR.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 334

ATmega32A

35. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this sec-
tion are referring to the document revision.

35.1 Rev. A-11/2018

Section Changes
* Updated the data sheet to Microchip style
* New Microchip document number. Previous version was Atmel data sheet Rev.8155E

Data sheet

35.2 Rev. 8155E - 02/2014

1. Updated the “Features” with “Capacitive touch sensing” capability.
2. Added “Errata” “ATmega32A, rev. J to rev. K” on page 333.

35.3 Rev. 8155D -10/2013

Added nominal values for symbol B, C and L in the TQFP-44 package drawing, “44A” on page
330.

35.4 Rev. 8155C - 02/2011

1. Updated the data sheet according to the Atmel new brand style guide (new logo, last page, etc).
2. Inserted note in “Performing Page Erase by SPM” on page 249 .

Note 6 and Note 7 below Table 28-4, “Two-wire Serial Bus Requirements,” on page 290 have

3 been removed.
4. Updated “Ordering Information” on page 329 to include Tape & Reel and 105°C devices.
5. Updated all “Typical Characteristics” .

35.5 Rev. 8155B - 07/2009

1. Updated “Errata” on page 333.

2. Updated the last page with Atmel's new addresses.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 335

ATmega32A

35.6 Rev. 8155A —06/2008

1. Initial revision (Based on the ATmega32/L datasheet 2503N-AVR-06/08)

Changes done compared ATmega32/L datasheet 2503N-AVR-06/08:

- Updated description in “Stack Pointer” on page 19.

- All Electrical characteristics is moved to “Electrical Characteristics” on page 286.
- Register descriptions are moved to sub sections at the end of each chapter.

- Test limits of Reset Pull-up Resistor (Rgg7) in “DC Characteristics” on page 286.
- New graphs in “Typical Characteristics” on page 296.

- New “Ordering Information” on page 329.

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 336

ATmega32A

The Microchip Web Site

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information
easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware
support documents, latest software releases and archived software

» General Technical Support — Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip
consultant program member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification
whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Design Support”, click on “Customer Change Notification” and
follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also
available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 337

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

ATmega32A

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= ISO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,
JukeBlox, KeelLoq, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MedialLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity,
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,
SMART-L.S., SQI, SuperSwitcher, SuperSwitcher Il, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3636-2

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002072A-page 338

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79
Germany - Garching

Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS40002072A-page 339

© 2018 Microchip Technology Inc.

http://support.microchip.com
http://www.microchip.com

	Features
	megaAVR® Data Sheet
	Introduction
	Table of Contents
	1. Pin Configurations
	2. Overview
	2.1 Block Diagram
	2.2 Pin Descriptions
	2.2.1 VCC
	2.2.2 GND
	2.2.3 Port A (PA7:PA0)
	2.2.4 Port B (PB7:PB0)
	2.2.5 Port C (PC7:PC0)
	2.2.6 Port D (PD7:PD0)
	2.2.7 RESET
	2.2.8 XTAL1
	2.2.9 XTAL2
	2.2.10 AVCC
	2.2.11 AREF

	3. Resources
	4. Data Retention
	5. About Code Examples
	6. Capacitive touch sensing
	7. AVR CPU Core
	7.1 Overview
	7.2 ALU – Arithmetic Logic Unit
	7.3 Status Register
	7.3.1 SREG – AVR Status Register(1)

	7.4 General Purpose Register File
	7.4.1 The X-register, Y-register and Z-register

	7.5 Stack Pointer
	7.5.1 SPH and SPL – Stack Pointer High and Low Register

	7.6 Instruction Execution Timing
	7.7 Reset and Interrupt Handling
	7.7.1 Interrupt Response Time

	8. AVR Memories
	8.1 Overview
	8.2 In-System Reprogrammable Flash Program Memory
	8.3 SRAM Data Memory
	8.3.1 Data Memory Access Times

	8.4 EEPROM Data Memory
	8.4.1 EEPROM Read/Write Access
	8.4.2 EEPROM Write During Power-down Sleep Mode
	8.4.3 Preventing EEPROM Corruption

	8.5 I/O Memory
	8.6 Register Description
	8.6.1 EEARH and EEARL – EEPROM Address Register
	8.6.2 EEDR – EEPROM Data Register
	8.6.3 EECR – EEPROM Control Register

	9. System Clock and Clock Options
	9.1 Clock Systems and their Distribution
	9.1.1 CPU Clock – clkCPU
	9.1.2 I/O Clock – clkI/O
	9.1.3 Flash Clock – clkFLASH
	9.1.4 Asynchronous Timer Clock – clkASY
	9.1.5 ADC Clock – clkADC

	9.2 Clock Sources
	9.3 Default Clock Source
	9.4 Crystal Oscillator
	9.5 Low-frequency Crystal Oscillator
	9.6 External RC Oscillator
	9.7 Calibrated Internal RC Oscillator
	9.8 External Clock
	9.9 Timer/Counter Oscillator
	9.10 Register Description
	9.10.1 OSCCAL – Oscillator Calibration Register

	10. Power Management and Sleep Modes
	10.1 Sleep Modes
	10.2 Idle Mode
	10.3 ADC Noise Reduction Mode
	10.4 Power-down Mode
	10.5 Power-save Mode
	10.6 Standby Mode
	10.7 Extended Standby Mode
	10.8 Minimizing Power Consumption
	10.8.1 Analog to Digital Converter
	10.8.2 Analog Comparator
	10.8.3 Brown-out Detector
	10.8.4 Internal Voltage Reference
	10.8.5 Watchdog Timer
	10.8.6 Port Pins
	10.8.7 JTAG Interface and On-chip Debug System

	10.9 Register Description
	10.9.1 MCUCR – MCU Control Register

	11. System Control and Reset
	11.1 Resetting the AVR
	11.2 Reset Sources
	11.2.1 Power-on Reset
	11.2.2 External Reset
	11.2.3 Brown-out Detection
	11.2.4 Watchdog Reset

	11.3 Internal Voltage Reference
	11.3.1 Voltage Reference Enable Signals and Start-up Time

	11.4 Watchdog Timer
	11.5 Register Description
	11.5.1 MCUCSR – MCU Control and Status Register
	11.5.2 WDTCR – Watchdog Timer Control Register

	12. Interrupts
	12.1 Interrupt Vectors in ATmega32A
	12.1.1 Moving Interrupts Between Application and Boot Space

	12.2 Register Description
	12.2.1 GICR – General Interrupt Control Register

	13. I/O Ports
	13.1 Overview
	13.2 Ports as General Digital I/O
	13.2.1 Configuring the Pin
	13.2.2 Reading the Pin Value
	13.2.3 Digital Input Enable and Sleep Modes
	13.2.4 Unconnected pins

	13.3 Alternate Port Functions
	13.3.1 Alternate Functions of Port A
	13.3.2 Alternate Functions of Port B
	13.3.3 Alternate Functions of Port C
	13.3.4 Alternate Functions of Port D

	13.4 Register Description
	13.4.1 SFIOR – Special Function I/O Register
	13.4.2 PORTA – Port A Data Register
	13.4.3 DDRA – Port A Data Direction Register
	13.4.4 PINA – Port A Input Pins Address
	13.4.5 PORTB – Port B Data Register
	13.4.6 DDRB – Port B Data Direction Register
	13.4.7 PINB – Port B Input Pins Address
	13.4.8 PORTC – Port C Data Register
	13.4.9 DDRC – Port C Data Direction Register
	13.4.10 PINC – Port C Input Pins Address
	13.4.11 PORTD – Port D Data Register
	13.4.12 DDRD – Port D Data Direction Register
	13.4.13 PIND – Port D Input Pins Address

	14. External Interrupts
	14.1 Register Description
	14.1.1 MCUCR – MCU Control Register
	14.1.2 MCUCSR – MCU Control and Status Register
	14.1.3 GICR – General Interrupt Control Register
	14.1.4 GIFR – General Interrupt Flag Register

	15. 8-bit Timer/Counter0 with PWM
	15.1 Features
	15.2 Overview
	15.2.1 Registers
	15.2.2 Definitions

	15.3 Timer/Counter Clock Sources
	15.4 Counter Unit
	15.5 Output Compare Unit
	15.5.1 Force Output Compare
	15.5.2 Compare Match Blocking by TCNT0 Write
	15.5.3 Using the Output Compare Unit

	15.6 Compare Match Output Unit
	15.6.1 Compare Output Mode and Waveform Generation

	15.7 Modes of Operation
	15.7.1 Normal Mode
	15.7.2 Clear Timer on Compare Match (CTC) Mode
	15.7.3 Fast PWM Mode
	15.7.4 Phase Correct PWM Mode

	15.8 Timer/Counter Timing Diagrams
	15.9 Register Description
	15.9.1 TCCR0 – Timer/Counter Control Register
	15.9.2 TCNT0 – Timer/Counter Register
	15.9.3 OCR0 – Output Compare Register
	15.9.4 TIMSK – Timer/Counter Interrupt Mask Register
	15.9.5 TIFR – Timer/Counter Interrupt Flag Register

	16. Timer/Counter0 and Timer/Counter1 Prescalers
	16.1 Overview
	16.2 Internal Clock Source
	16.3 Prescaler Reset
	16.4 External Clock Source
	16.5 Register Description
	16.5.1 SFIOR – Special Function IO Register

	17. 16-bit Timer/Counter1
	17.1 Features
	17.2 Overview
	17.2.1 Registers
	17.2.2 Definitions
	17.2.3 Compatibility

	17.3 Accessing 16-bit Registers
	17.3.1 Reusing the Temporary High Byte Register

	17.4 Timer/Counter Clock Sources
	17.5 Counter Unit
	17.6 Input Capture Unit
	17.6.1 Input Capture Pin Source
	17.6.2 Noise Canceler
	17.6.3 Using the Input Capture Unit
	17.6.4 Output Compare Units
	17.6.5 Force Output Compare
	17.6.6 Compare Match Blocking by TCNT1 Write
	17.6.7 Using the Output Compare Unit

	17.7 Compare Match Output Unit
	17.7.1 Compare Output Mode and Waveform Generation

	17.8 Modes of Operation
	17.8.1 Normal Mode
	17.8.2 Clear Timer on Compare Match (CTC) Mode
	17.8.3 Fast PWM Mode
	17.8.4 Phase Correct PWM Mode
	17.8.5 Phase and Frequency Correct PWM Mode

	17.9 Timer/Counter Timing Diagrams
	17.10 Register Description
	17.10.1 TCCR1A – Timer/Counter1 Control Register A
	17.10.2 TCCR1B – Timer/Counter1 Control Register B
	17.10.3 TCNT1H and TCNT1L – Timer/Counter1
	17.10.4 OCR1AH and OCR1AL – Output Compare Register 1 A
	17.10.5 OCR1BH and OCR1BL – Output Compare Register 1 B
	17.10.6 ICR1H and ICR1L – Input Capture Register 1
	17.10.7 TIMSK – Timer/Counter Interrupt Mask Register(1)
	17.10.8 TIFR – Timer/Counter Interrupt Flag Register

	18. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	18.1 Features
	18.2 Overview
	18.2.1 Registers
	18.2.2 Definitions

	18.3 Timer/Counter Clock Sources
	18.4 Counter Unit
	18.5 Output Compare Unit
	18.5.1 Force Output Compare
	18.5.2 Compare Match Blocking by TCNT2 Write
	18.5.3 Using the Output Compare Unit

	18.6 Compare Match Output Unit
	18.6.1 Compare Output Mode and Waveform Generation

	18.7 Modes of Operation
	18.7.1 Normal Mode
	18.7.2 Clear Timer on Compare Match (CTC) Mode
	18.7.3 Fast PWM Mode
	18.7.4 Phase Correct PWM Mode

	18.8 Timer/Counter Timing Diagrams
	18.9 Asynchronous Operation of the Timer/Counter
	18.10 Timer/Counter Prescaler
	18.11 Register Description
	18.11.1 TCCR2 – Timer/Counter Control Register
	18.11.2 TCNT2 – Timer/Counter Register
	18.11.3 OCR2 – Output Compare Register
	18.11.4 ASSR – Asynchronous Status Register
	18.11.5 TIMSK – Timer/Counter Interrupt Mask Register
	18.11.6 TIFR – Timer/Counter Interrupt Flag Register
	18.11.7 SFIOR – Special Function IO Register

	19. SPI – Serial Peripheral Interface
	19.1 Features
	19.2 Overview
	19.3 SS Pin Functionality
	19.3.1 Slave Mode
	19.3.2 Master Mode
	19.3.3 SPCR – SPI Control Register
	19.3.4 SPSR – SPI Status Register
	19.3.5 SPDR – SPI Data Register

	19.4 Data Modes

	20. USART
	20.1 Features
	20.2 Overview
	20.2.1 AVR USART vs. AVR UART – Compatibility

	20.3 Clock Generation
	20.3.1 Internal Clock Generation – The Baud Rate Generator
	20.3.2 Double Speed Operation (U2X)
	20.3.3 External Clock
	20.3.4 Synchronous Clock Operation

	20.4 Frame Formats
	20.4.1 Parity Bit Calculation

	20.5 USART Initialization
	20.6 Data Transmission – The USART Transmitter
	20.6.1 Sending Frames with 5 to 8 Data Bit
	20.6.2 Sending Frames with 9 Data Bit
	20.6.3 Transmitter Flags and Interrupts
	20.6.4 Parity Generator
	20.6.5 Disabling the Transmitter

	20.7 Data Reception – The USART Receiver
	20.7.1 Receiving Frames with 5 to 8 Data Bits
	20.7.2 Receiving Frames with 9 Databits
	20.7.3 Receive Compete Flag and Interrupt
	20.7.4 Receiver Error Flags
	20.7.5 Parity Checker
	20.7.6 Disabling the Receiver
	20.7.7 Flushing the Receive Buffer

	20.8 Asynchronous Data Reception
	20.8.1 Asynchronous Clock Recovery
	20.8.2 Asynchronous Data Recovery
	20.8.3 Asynchronous Operational Range

	20.9 Multi-processor Communication Mode
	20.9.1 Using MPCM

	20.10 Accessing UBRRH/UCSRC Registers
	20.10.1 Write Access
	20.10.2 Read Access

	20.11 Register Description
	20.11.1 UDR – USART I/O Data Register
	20.11.2 UCSRA – USART Control and Status Register A
	20.11.3 UCSRB – USART Control and Status Register B
	20.11.4 UCSRC – USART Control and Status Register C
	20.11.5 UBRRL and UBRRH – USART Baud Rate Registers

	20.12 Examples of Baud Rate Setting

	21. Two-wire Serial Interface
	21.1 Features
	21.2 Two-wire Serial Interface Bus Definition
	21.2.1 TWI Terminology
	21.2.2 Electrical Interconnection

	21.3 Data Transfer and Frame Format
	21.3.1 Transferring Bits
	21.3.2 START and STOP Conditions
	21.3.3 Address Packet Format
	21.3.4 Data Packet Format
	21.3.5 Combining Address and Data Packets into a Transmission

	21.4 Multi-master Bus Systems, Arbitration and Synchronization
	21.5 Overview of the TWI Module
	21.5.1 SCL and SDA Pins
	21.5.2 Bit Rate Generator Unit
	21.5.3 Bus Interface Unit
	21.5.4 Address Match Unit
	21.5.5 Control Unit

	21.6 Using the TWI
	21.7 Transmission Modes
	21.7.1 Master Transmitter Mode
	21.7.2 Master Receiver Mode
	21.7.3 Slave Receiver Mode
	21.7.4 Slave Transmitter Mode
	21.7.5 Miscellaneous States
	21.7.6 Combining Several TWI Modes

	21.8 Multi-master Systems and Arbitration
	21.9 Register Description
	21.9.1 TWBR – TWI Bit Rate Register
	21.9.2 TWCR – TWI Control Register
	21.9.3 TWSR – TWI Status Register
	21.9.4 TWDR – TWI Data Register
	21.9.5 TWAR – TWI (Slave) Address Register

	22. Analog Comparator
	22.1 Overview
	22.2 Analog Comparator Multiplexed Input
	22.3 Register Description
	22.3.1 SFIOR – Special Function IO Register
	22.3.2 ACSR – Analog Comparator Control and Status Register

	23. Analog to Digital Converter
	23.1 Features
	23.2 Overview
	23.3 Operation
	23.4 Starting a Conversion
	23.5 Prescaling and Conversion Timing
	23.5.1 Differential Gain Channels

	23.6 Changing Channel or Reference Selection
	23.6.1 ADC Input Channels
	23.6.2 ADC Voltage Reference

	23.7 ADC Noise Canceler
	23.7.1 Analog Input Circuitry
	23.7.2 Analog Noise Canceling Techniques
	23.7.3 Offset Compensation Schemes
	23.7.4 ADC Accuracy Definitions

	23.8 ADC Conversion Result
	23.9 Register Description
	23.9.1 ADMUX – ADC Multiplexer Selection Register
	23.9.2 ADCSRA – ADC Control and Status Register A
	23.9.3 ADCL and ADCH – The ADC Data Register
	23.9.3.1 ADLAR = 0
	23.9.3.2 ADLAR = 1

	23.9.4 SFIOR – Special FunctionIO Register

	24. JTAG Interface and On-chip Debug System
	24.1 Features
	24.2 Overview
	24.3 TAP – Test Access Port
	24.4 TAP Controller
	24.5 Using the Boundary-scan Chain
	24.6 Using the On-chip Debug System
	24.7 On-chip Debug Specific JTAG Instructions
	24.7.1 PRIVATE0; $8
	24.7.2 PRIVATE1; $9
	24.7.3 PRIVATE2; $A
	24.7.4 PRIVATE3; $B

	24.8 Using the JTAG Programming Capabilities
	24.9 Register Description
	24.9.1 OCDR – On-chip Debug Register

	24.10 Bibliography

	25. IEEE 1149.1 (JTAG) Boundary-scan
	25.1 Features
	25.2 Overview
	25.3 Data Registers
	25.3.1 Bypass Register
	25.3.2 Device Identification Register
	25.3.2.1 Version
	25.3.2.2 Part Number
	25.3.2.3 Manufacturer ID

	25.3.3 Reset Register
	25.3.4 Boundary-scan Chain

	25.4 Boundary-scan Specific JTAG Instructions
	25.4.1 EXTEST; $0
	25.4.2 IDCODE; $1
	25.4.3 SAMPLE_PRELOAD; $2
	25.4.4 AVR_RESET; $C
	25.4.5 BYPASS; $F

	25.5 Boundary-scan Chain
	25.5.1 Scanning the Digital Port Pins
	25.5.2 Boundary-scan and the Two-wire Interface
	25.5.3 Scanning the RESET Pin
	25.5.4 Scanning the Clock Pins
	25.5.5 Scanning the Analog Comparator
	25.5.6 Scanning the ADC

	25.6 ATmega32A Boundary-scan Order
	25.7 Boundary-scan Description Language Files
	25.8 Register Description
	25.8.1 MCU Control and Status Register – MCUCSR

	26. Boot Loader Support – Read-While-Write Self-Programming
	26.1 Features
	26.2 Overview
	26.3 Application and Boot Loader Flash Sections
	26.3.1 Application Section
	26.3.2 BLS – Boot Loader Section

	26.4 Read-While-Write and no Read-While-Write Flash Sections
	26.4.1 RWW – Read-While-Write Section
	26.4.2 NRWW – No Read-While-Write Section

	26.5 Boot Loader Lock Bits
	26.6 Entering the Boot Loader Program
	26.7 Addressing the Flash during Self-Programming
	26.8 Self-Programming the Flash
	26.8.1 Performing Page Erase by SPM
	26.8.2 Filling the Temporary Buffer (Page Loading)
	26.8.3 Performing a Page Write
	26.8.4 Using the SPM Interrupt
	26.8.5 Consideration while Updating BLS
	26.8.6 Prevent Reading the RWW Section during Self-Programming
	26.8.7 Setting the Boot Loader Lock Bits by SPM
	26.8.8 EEPROM Write Prevents Writing to SPMCR
	26.8.9 Reading the Fuse and Lock Bits from Software
	26.8.10 Preventing Flash Corruption
	26.8.11 Programming Time for Flash when using SPM
	26.8.12 Simple Assembly Code Example for a Boot Loader
	26.8.13 Boot Loader Parameters

	26.9 Register Description
	26.9.1 SPMCR – Store Program Memory Control Register

	27. Memory Programming
	27.1 Program And Data Memory Lock Bits
	27.2 Fuse Bits
	27.2.1 Latching of Fuses

	27.3 Signature Bytes
	27.4 Calibration Byte
	27.5 Page Size
	27.6 Parallel Programming Parameters, Pin Mapping, and Commands
	27.6.1 Signal Names

	27.7 Parallel Programming
	27.7.1 Enter Programming Mode
	27.7.2 Considerations for Efficient Programming
	27.7.3 Chip Erase
	27.7.4 Programming the Flash
	27.7.5 Programming the EEPROM
	27.7.6 Reading the Flash
	27.7.7 Reading the EEPROM
	27.7.8 Programming the Fuse Low Bits
	27.7.9 Programming the Fuse High Bits
	27.7.10 Programming the Lock Bits
	27.7.11 Reading the Fuse and Lock Bits
	27.7.12 Reading the Signature Bytes
	27.7.13 Reading the Calibration Byte
	27.7.14 Parallel Programming Characteristics

	27.8 SPI Serial Downloading
	27.9 SPI Serial Programming Pin Mapping
	27.9.1 SPI Serial Programming Algorithm
	27.9.2 Data Polling Flash
	27.9.3 Data Polling EEPROM
	27.9.4 SPI Serial Programming Characteristics

	27.10 Programming via the JTAG Interface
	27.10.1 Programming Specific JTAG Instructions
	27.10.2 AVR_RESET ($C)
	27.10.3 PROG_ENABLE ($4)
	27.10.4 PROG_COMMANDS ($5)
	27.10.5 PROG_PAGELOAD ($6)
	27.10.6 PROG_PAGEREAD ($7)
	27.10.7 Data Registers
	27.10.8 Reset Register
	27.10.9 Programming Enable Register
	27.10.10 Programming Command Register
	27.10.11 Virtual Flash Page Load Register
	27.10.12 Virtual Flash Page Read Register
	27.10.13 Programming Algorithm
	27.10.14 Entering Programming Mode
	27.10.15 Leaving Programming Mode
	27.10.16 Performing Chip Erase
	27.10.17 Programming the Flash
	27.10.18 Reading the Flash
	27.10.19 Programming the EEPROM
	27.10.20 Reading the EEPROM
	27.10.21 Programming the Fuses
	27.10.22 Programming the Lock Bits
	27.10.23 Reading the Fuses and Lock Bits
	27.10.24 Reading the Signature Bytes
	27.10.25 Reading the Calibration Byte

	28. Electrical Characteristics
	28.1 Absolute Maximum Ratings*
	28.2 DC Characteristics
	28.3 Speed Grades
	28.4 Clock Characteristics
	28.4.1 External Clock Drive Waveforms
	28.4.2 External Clock Drive

	28.5 System and Reset Characteristics
	28.6 Two-wire Serial Interface Characteristics
	28.7 SPI Timing Characteristics
	28.8 ADC Characteristics

	29. Typical Characteristics
	29.1 Active Supply Current
	29.2 Idle Supply Current
	29.3 Power-down Supply Current
	29.4 Power-save Supply Current
	29.5 Standby Supply Current
	29.6 Pin Pull-up
	29.7 Pin Driver Strength
	29.8 Pin Thresholds and Hysteresis
	29.9 BOD Thresholds and Analog Comparator Offset
	29.10 Internal Oscillator Speed
	29.11 Current Consumption of Peripheral Units
	29.12 Current Consumption in Reset and Reset Pulsewidth

	30. Register Summary
	31. Instruction Set Summary
	32. Ordering Information
	33. Packaging Information
	33.1 44A
	33.2 40P6
	33.3 44M1

	34. Errata
	34.1 ATmega32A, rev. J to rev. K
	34.2 ATmega32A, rev. G to rev. I

	35. Datasheet Revision History
	35.1 Rev. A – 11/2018
	35.2 Rev. 8155E – 02/2014
	35.3 Rev. 8155D – 10/2013
	35.4 Rev. 8155C – 02/2011
	35.5 Rev. 8155B – 07/2009
	35.6 Rev. 8155A – 06/2008

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MIC...
	Trademarks
	ISBN: 978-1-5224-3636-2
	AMERICAS
	Corporate Office
	Atlanta
	Austin, TX
	Boston
	Chicago
	Dallas
	Detroit
	Houston, TX
	Indianapolis
	Los Angeles
	Raleigh, NC
	New York, NY
	San Jose, CA
	Canada - Toronto

	ASIA/PACIFIC
	Australia - Sydney
	China - Beijing
	China - Chengdu
	China - Chongqing
	China - Dongguan
	China - Guangzhou
	China - Hangzhou
	China - Hong Kong SAR
	China - Nanjing
	China - Qingdao
	China - Shanghai
	China - Shenyang
	China - Shenzhen
	China - Suzhou
	China - Wuhan
	China - Xian
	China - Xiamen
	China - Zhuhai

	ASIA/PACIFIC
	India - Bangalore
	India - New Delhi
	India - Pune
	Japan - Osaka
	Japan - Tokyo
	Korea - Daegu
	Korea - Seoul
	Malaysia - Kuala Lumpur
	Malaysia - Penang
	Philippines - Manila
	Singapore
	Taiwan - Hsin Chu
	Taiwan - Kaohsiung
	Taiwan - Taipei
	Thailand - Bangkok
	Vietnam - Ho Chi Minh
	EUROPE
	Austria - Wels
	Denmark - Copenhagen
	Finland - Espoo
	France - Paris
	Germany - Garching
	Germany - Haan
	Germany - Heilbronn
	Germany - Karlsruhe
	Germany - Munich
	Germany - Rosenheim
	Israel - Ra’anana
	Italy - Milan
	Italy - Padova
	Netherlands - Drunen
	Norway - Trondheim
	Poland - Warsaw
	Romania - Bucharest
	Spain - Madrid
	Sweden - Gothenberg
	Sweden - Stockholm
	UK - Wokingham

	Worldwide Sales and Service

