

DNK1101M

Surface Mount Type/ High-output IRED for Automotive

Features

i eatures		
Package	10.2 x 6.0 mm (h=5.5 mm) type, Water clear epoxy	
Product features	 Outer Dimension 10.2 x 6.0 x 5.5mm (L x W x H) Big Lenz Type Wide operation temperature range. Storage Temperature : -40°C~120°C Operating Temperature : -30°C~ 95°C High Total Output Power : 22mW TYP. (I_F=50mA) Operation at 50mA is possible at 85°C. Lead-free soldering compatible RoHS compliant 	
Peak Wavelength	870nm	
Half Intensity Angle	θ x = 38 deg., θ y = 38 deg.	
Die materials	GaAlAs	
Rank grouping parameter	Sorted by radiant intensity per rank taping	
Assembly method	Auto pick & place machine (Auto Mounter)	
Soldering methods	Reflow soldering **Please refer to Soldering Conditions about soldering.	
Taping and reel	900pcs per reel in a 24mm width tape. (Standard) Reel diameter: ϕ 330mm	
ESD	2kV (HBM)	

Recommended Applications

Automotive (Camera of Door Mirror, Camera of Crew Detection, Camera of Driver Watch, Rear Head Phone, Back Monitor, Various Sensors)

Absolute Maximum Ratings

(Ta=25°C)

lte m		Symbol	Absolute Maximum Ratings	Unit	
Power Di	ssipation	Pd	170	mW	
Forward Current	Ta=60℃		120	mA	
	Ta=95℃	I _F	40		
Pulse Forwar	d Current ^{※1}	I _{FRM}	1,200	mA	
Derating (Ta=60℃ or higher)		⊿ I _F	2.29	mA/℃	
		⊿ I _{FRM}	22.90	mA/℃	
Reverse Voltage		V_R	5	V	
Operating Temperature		Topr	-30~+95	င	
Storage Temperature		T _{stg}	-40 ∼ +120	င	

[%] 1 I_{FRM} Measurement condition : Pulse Width \leq 100 μ s, Duty \leq 1/100

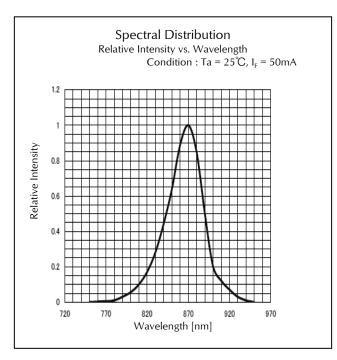
Electro-Optical Characteristics

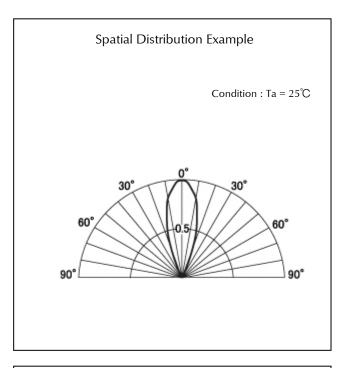
(Ta=25°C)

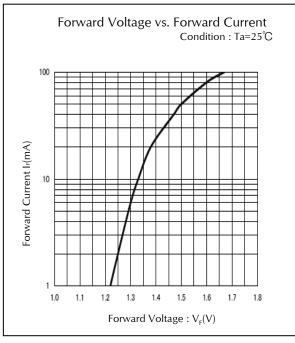
lte m		S v m h a l	Characteristics		1 lm :4
пеш	Conditions	Symbol	Characteristics		Unit
Forward Voltage		V _F	MIN.	1.3	V
	I _F =50mA		TYP.	1.5	
			MAX.	1.7	
Pulse Forward Voltage	I _{FRM} =500mA	V_{FM}	MAX.	3.4	V
Reverse Current	V _R =5V	I _R	MAX.	100	μΑ
		I _E	MIN.	20	mW/sr
Radiant Intensity	I _F =50mA		TYP.	35	
			MAX.	(60)	
Total Output Power	I _F =50mA	Po	TYP.	22	mW
Peak Wavelength	I _F =50mA	λp	TYP.	870	nm
Spectral Half-width	I _F =50mA	⊿ λ	TYP.	45	nm
11.1616	I 50A	2 θ 1/2	TYP. $\frac{38(\theta x)}{38(\theta y)}$	38(\theta x)	م د اد
Half Intensity Angle	I _F =50mA			deg.	
Cut off Fun museum	$I_F=50\text{mA}_{DC}\pm5\text{mA},$	fc	MIN.	(40)	MHz
Cut-off Frequency	-3db from 1MHz		TYP.	55	
Response Time	I _F =50mA	tr/tf	TYP.	7/7	ns

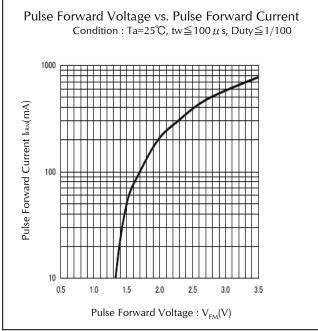
2009.11.30

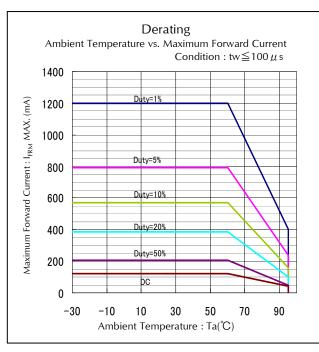
Radiant Intensity Rank

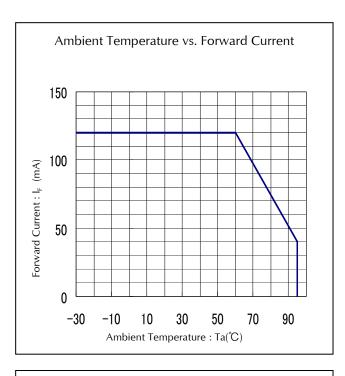

(Ta=25℃)

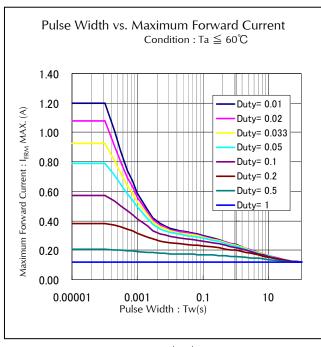

Dank	l _E (m	Condition	
Rank	MIN.	MAX.	Condition
A	20	35	
В	30	45	I _F = 50mA
С	40	(60)	

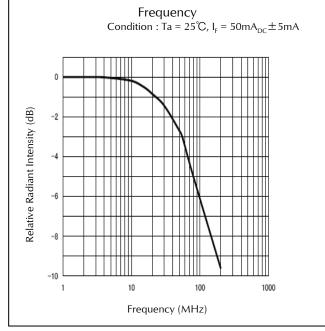

^{**}Please contact our sales staff concerning rank designation.

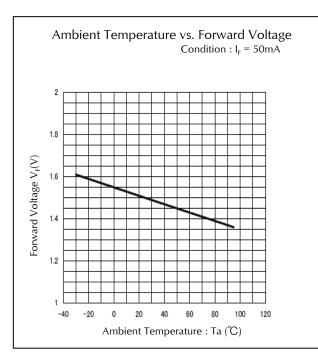


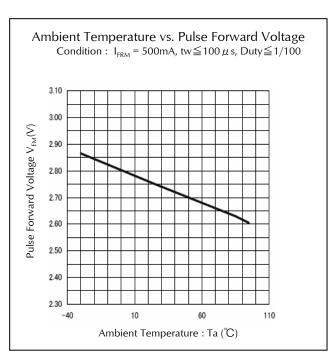


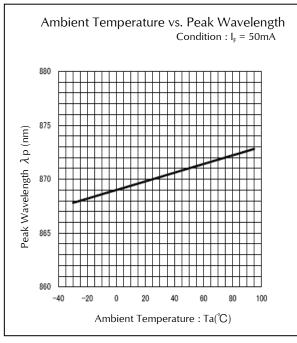


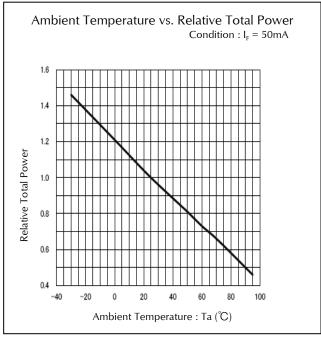


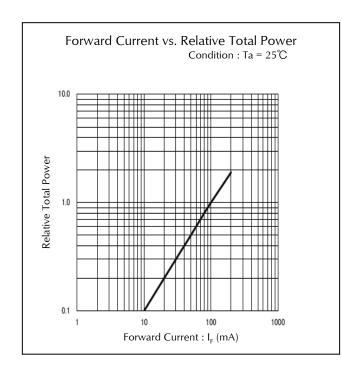


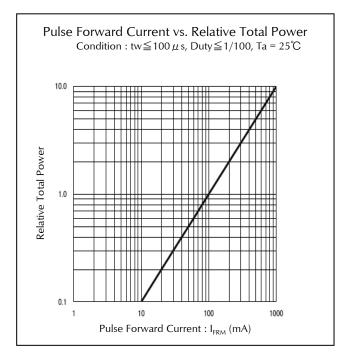


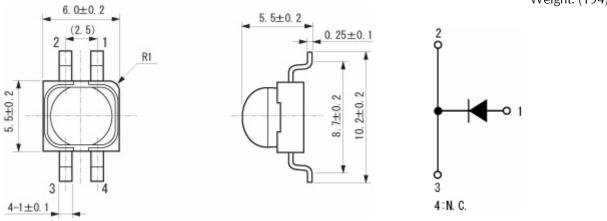



$$Duty = \frac{Tw}{T}$$

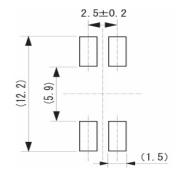






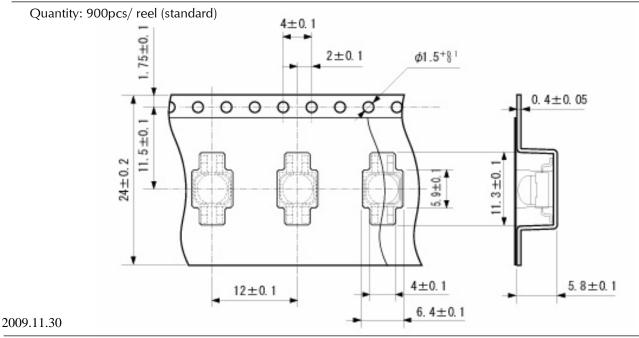


Package Dimensions

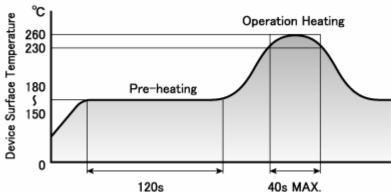

(Unit: mm)

Weight: (194)mg

Recommended Soldering Pattern


(Unit: mm)

Taping Specification


(Unit: mm)

Page 8

Reflow Soldering Conditions

- 1) The above profile temperature gives the maximum temperature of the LED resin surface. Please set the temperature so as to avoid exceeding this range.
- 2) Total times of reflow soldering process shall be no more than 2 times. When the second reflow soldering process is performed, intervals between the first and second reflow should be short as possible (while allowing some time for the component to return to normal temperature after the first reflow) in order to prevent the LED from absorbing moisture.
- 3) Temperature fluctuation to the LED during the pre-heating process shall be minimized.

Manual Soldering Conditions

Iron tip temp.	350 ℃	(MAX.) (30 W Max.)
Soldering time and frequency	3 s 1 time	(MAX.) (MAX.)

Handling Note

1. Handling of the Products

Mold resin on the backside of the products has adhesiveness. If dust or your hand is stuck to the backside, Please slowly remove the product from there. And if the backside is strongly pushed, it affects the characteristics and reliability. Please be careful in handling.

2 Dirt

If dirt sticks to the surface of lens, it affects the radiant intensity. Please don't touch the lens with bare hands. If dirt affects function, please wipe the dirt off carefully not to cause scratches on the lens with lens paper or the like. And if flux is stuck to the lens, please wipe the flux off carefully with alcohol-based cleaner.

3. Dew

When the temperature changes suddenly at high temperature and humidity, dew is generated. Because dew is likely to cause reduction in radiant intensity, failure to light up, deterioration of insulation and the like, please care. Because color of lens changes into milky color by rapid cooling at the conditions of high temperature and humidity, please care.

4. Freezing

When temperature is below 0° C, water of dew and the like freezes. Because freezing is likely to cause reduction in radiant intensity, failure to light up, deterioration of insulation and the like, please care.

5. Strength

When mounting, assembling, cleaning the lens, storing the products and the like, please be careful not to apply mechanical stress and excessive vibration to products. They are likely to cause cracks, delamination and bending terminal. And they are likely to affect the characteristics and reliability badly.

6. Mechanical stress to terminals

When storing products and soldering, please be careful not to apply mechanical stress and excessive vibration to terminals. They are likely to cause cracks, delamination and bending terminal. And they are likely to affect the characteristics and reliability badly.

7. Backside

Dust is stuck to the backside easily on construction of this product. There is no problem on the characteristic even if dust is stuck to the backside. Please be careful not to wipe off forcibly and not to rub.

8. Moisture Absorption

If you use soldering with the over-specified humidity conditions, it affects the characteristics and reliability. Please use with the specified conditions.

9. Discoloration

This product might discolor by the heat of reflow and might change to yellowish. But there is no problem on the characteristic and reliability.

10. Application

Please stop to use by the applications that the breakdown and the wrong operation might influence the life or the human body.

11. Other

When there is a process of supersonic wave welding etc after mounting the product, there is a possibility of affecting on the reliability of junction part in package (junction part of die bonding and wire bonding). Please use after affirming beforehand there is no problem.

If this product is used excluding the content described to these specifications, we do not take any responsibility. If you use it excluding these ratings, please consult us beforehand.

★Safety of Near-Infrared Rays★

It is generally said that the near-infrared rays(870nm) used for this product is harmless to humans. But we can not say that direct rays to eyes are always safe as well as the visual light. Please pay attention when the product is used.

Reliability Testing Result

Reliability Testing Result	Applicable Standard	Testing Conditions	Duration	Failure
Room Temp.	EIAJ ED-	Ta = 25°C, IF = 100mA	1,000 h	0/20
Operating Life	Operating Life 4701/100(101)	Ta = 25° C, IFRM = 1,000mA, (tw=100 μ s, Duty=1/100)	1,000 h	0/20
High Temp. Operating Life	EIAJ ED- 4701/100(101)	Ta = 95°C, IF = 40mA	1,000 h	0/20
Low Temp. Operating Life	EIAJ ED- 4701/100(101)	$T_a = -30^{\circ}C$, $I_F = 100 \text{mA}$	1,000 h	0/20
Wet High Temp. Operating Life	EIAJ ED- 4701/100(102)	Ta = 85°C, 85%, IF = 50mA	1,000 h	0/20
Thermal Shock	EIAJ ED- 4701/100(105)	Ta = -40° C $\sim 120^{\circ}$ C (each 15min.)	1,000 cycles	0/20
High Temp. Storage Life	EIAJ ED- 4701/200(201)	Ta = 120°C	1,000 h	0/20
Low Temp. Storage Life	EIAJ ED- 4701/200(202)	Ta = -40°C	1,000 h	0/20
Resistance to Soldering Heat	EIAJ ED- 4701/300(301)	(Pretreatment) Individual standard (Reflow Soldering) Pre-heating 180°C 120s →Operating Heating 260°C 5s	Twice	0/20
Electric Static Discharge (ESD)	EIAJ ED- 4701/300(304)	$C = 100 \text{pF}, R2 = 1.5 \text{K}\Omega, \pm 2,000 \text{V}$	once each polarity	0/10
Vibration, Variable Frequency	EIAJ ED- 4701/400(403)	44.1 m/s 2 (4.5 G), 20 \sim 500 Hz, 20 min, XYZ each direction	2 h	0/10
Shock	EIAJ ED- 4701/400(404)	5000m/s ² (510G), 0.5ms, 6directions	3 times	0/10

Failure Criteria

Items	Symbols	Conditions	Failure criteria
Radiant Intensity	I _E	IF Value of each product Radiant Intensity	Testing Min. Value < Initial Value x 0.5
Forward Voltage	VF	IF Value of each product Forward Voltage	Testing Max. Value > Spec. Max. Value x 1.2
Reverse Current	I R	VR = Maximum Rated Reverse Voltage V	Testing Max. Value ≧ Spec. Max. Value x 2.5

Special Notice to Customers Using the Products and Technical Information Shown in This Data Sheet

- 1) The technical information shown in the data sheets are limited to the typical characteristics and circuit examples of the referenced products. It does not constitute the warranting of industrial property nor the granting of any license.
- 2) For the purpose of product improvement, the specifications, characteristics and technical data described in the data sheets are subject to change without prior notice. Therefore it is recommended that the most updated specifications be used in your design.
- 3) When using the products described in the data sheets, please adhere to the maximum ratings for operating voltage, heat dissipation characteristics, and other precautions for use. We are not responsible for any damage which may occur if these specifications are exceeded.
- 4) The products that have been described to this catalog are manufactured so that they will be used for the electrical instrument of the benchmark (OA equipment, telecommunications equipment, AV machine, home appliance and measuring instrument).
 - The application of aircrafts, space borne application, transportation equipment, medical equipment and nuclear power control equipment, etc. needs a high reliability and safety, and the breakdown and the wrong operation might influence the life or the human body. Please consult us beforehand if you plan to use our product for the usages of aircrafts, space borne application, transportation equipment, medical equipment and nuclear power control equipment, etc. except OA equipment, telecommunications equipment, AV machine, home appliance and measuring instrument.
- 5) In order to export the products or technologies described in this data sheet which are under the "Foreign Exchange and Foreign Trade Control Law," it is necessary to first obtain an export permit from the Japanese government.
- 6) No part of this data sheet may be reprinted or reproduced without prior written permission from Stanley Electric Co., Ltd.
- 7) The most updated edition of this data sheet can be obtained from the address below: http://www.stanley-components.com